Anatomy and histology of the Göttingen minipig adenohypophysis with special emphasis on the polypeptide hormones: GH, PRL, and ACTH

Abstract

The pituitary is involved in the regulation of endocrine homeostasis. Therefore, animal models of pituitary disease based on a thorough knowledge of pituitary anatomy are of great importance. Accordingly, we aimed to perform a qualitative and quantitative description of polypeptide hormone secreting cellular components of the Göttingen minipig adenohypophysis using immunohistochemistry and stereology. Estimates of the total number of cells immune-stained for adrenocorticotrophic hormone (ACTH), prolactin (PRL), and growth hormone (GH) were obtained with the optical fractionator technique using Stereo Investigator software. Moreover, 3D reconstructions of cell distribution were made. We estimated that the normal minipig adenohypophysis contains, on average, 5.6 million GH, 3.5 million PRL, and 2.4 million ACTH producing cells. The ACTH producing cells were widely distributed, while the PRL and GH producing cells were located in clusters in the central and lateral regions of the adenohypophysis. The morphology of the hormone producing cells also differs. We visualized a clear difference in the numerical density of hormone producing cells throughout the adenohypophysis. The relative proportions of the cells analyzed in our experiment are comparable to those observed in humans, primates, and rodents; however, the distribution of cells differs among species. The distribution of GH cells in the minipig is similar to that in humans, while the PRL and ACTH cell distributions differ. The volume of the pituitary is slightly smaller than that of humans. These data provide a framework for future large animal experimentation on pituitary function in health and disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Amar AP, Weiss MH (2003) Pituitary anatomy and physiology. Neurosurg Clin N Am 14:11–23. https://doi.org/10.1016/s1042-3680(02)00017-7

    Article  PubMed  Google Scholar 

  2. Arafah BM (1986) Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 62:1173–1179. https://doi.org/10.1210/jcem-62-6-1173

    CAS  Article  PubMed  Google Scholar 

  3. Arafah BM, Kailani SH, Nekl KE, Gold RS, Selman WR (1994) Immediate recovery of pituitary function after transsphenoidal resection of pituitary macroadenomas. J Clin Endocrinol Metab 79:348–354. https://doi.org/10.1210/jcem.79.2.8045946

    CAS  Article  PubMed  Google Scholar 

  4. Asa SL, Penz G, Kovacs K, Ezrin C (1982) Prolactin cells in the human pituitary—a quantitative immuno-cytochemical analysis. Arch Pathol Lab Med 106:360–363

    CAS  PubMed  Google Scholar 

  5. Bargmann W (1949) The neurosecretory connection between the hypothalamus and the neurohypophysis. Z Zellforsch Mikrosk Anat 34:610–634

    CAS  PubMed  Google Scholar 

  6. Bargmann W, Hild W, Ortmann R, Schiebler TH (1950) Morphologic and experimental studies of the hypothalamohypophyseal system. Acta Neuroveg (wien) 1:233–275

    CAS  Article  Google Scholar 

  7. Bjarkam CR et al (2004) A MRI-compatible stereotaxic localizer box enables high-precision stereotaxic procedures in pigs. J Neurosci Methods 139:293–298. https://doi.org/10.1016/j.jneumeth.2004.05.004

    CAS  Article  PubMed  Google Scholar 

  8. Bjarkam CR, Glud AN, Orlowski D, Sorensen JC, Palomero-Gallagher N (2016) The telencephalon of the Gottingen minipig, cytoarchitecture and cortical surface anatomy. Brain Struct Funct. https://doi.org/10.1007/s00429-016-1327-5

    Article  PubMed  Google Scholar 

  9. Bjarkam CR, Glud AN, Orlowski D, Sorensen JCH, Palomero-Gallagher N (2017a) The telencephalon of the Gottingen minipig, cytoarchitecture and cortical surface anatomy. Brain Struct Funct 222:2093–2114. https://doi.org/10.1007/s00429-016-1327-5

    Article  PubMed  Google Scholar 

  10. Bjarkam CR, Orlowski D, Tvilling L, Bech J, Glud AN, Sørensen JCH (2017b) Exposure of the pig CNS for histological analysis: a manual for decapitation, skull opening and brain removal. J Vis Exp. https://doi.org/10.3791/55511

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bonthius DJ, McKim R, Koele L, Harb H, Karacay B, Mahoney J, Pantazis NJ (2004) Use of frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical disector and optical fractionator. Brain Res Brain Res Protoc 14:45–57. https://doi.org/10.1016/j.brainresprot.2004.09.003

    Article  PubMed  Google Scholar 

  12. Cao D, Ma X, Zhang WJ, Xie Z (2017) Dissection and coronal slice preparation of developing mouse pituitary gland. J vis Exp. https://doi.org/10.3791/56356

    Article  PubMed  PubMed Central  Google Scholar 

  13. Catt KJ (1970) Pituitary function. Lancet 1:827–831. https://doi.org/10.1016/s0140-6736(70)92423-2

    CAS  Article  PubMed  Google Scholar 

  14. Christensen AB, Sorensen JCH, Ettrup KS, Orlowski D, Bjarkam CR (2018) Pirouetting pigs: a large non-primate animal model based on unilateral 6-hydroxydopamine lesioning of the nigrostriatal pathway. Brain Res Bull 139:167–173. https://doi.org/10.1016/j.brainresbull.2018.02.010

    CAS  Article  PubMed  Google Scholar 

  15. Console GM, Gomez Dumm CL, Brown OA, Ferese C, Goya RG (1997) Sexual dimorphism in the age changes of the pituitary lactotrophs in rats. Mech Ageing Dev 95:157–166. https://doi.org/10.1016/s0047-6374(97)01878-2

    CAS  Article  PubMed  Google Scholar 

  16. Console GM, Jurado SB, Oyhenart E, Ferese C, Pucciarelli H, Dumm CLAG (2001) Morphometric and ultrastructural analysis of different pituitary cell populations in undernourished monkeys. Braz J Med Biol Res 34:65–74. https://doi.org/10.1590/S0100-879x2001000100008

    CAS  Article  PubMed  Google Scholar 

  17. Cruz-Orive LM, Weibel ER (1990) Recent stereological methods for cell biology: a brief survey. Am J Physiol 258:L148-156

    CAS  PubMed  Google Scholar 

  18. Cushing H (1912) The pituitary body and its disorders, clinical states produced by disorders of the hypophysis cerebri. vol x. J.B. Lippincott Company, Philadelphia

  19. Dacheux F (1980) Ultrastructural immunocytochemical localization of prolactin and growth hormone in the porcine pituitary. Cell Tissue Res 207:277–286. https://doi.org/10.1007/BF00237812

    CAS  Article  PubMed  Google Scholar 

  20. Dacheux F (1981) Ultrastructural localization of corticotropin, beta-lipotropin, and alpha- and beta-endorphin in the porcine anterior pituitary. Cell Tissue Res 215:87–101. https://doi.org/10.1007/BF00236251

    CAS  Article  PubMed  Google Scholar 

  21. Dacheux F (1984) Differentiation of cells producing polypeptide hormones (ACTH, MSH, LPH, alpha- and beta-endorphin, GH and PRL) in the fetal porcine anterior pituitary. Cell Tissue Res 235:615–621. https://doi.org/10.1007/BF00226960

    CAS  Article  PubMed  Google Scholar 

  22. Dacheux F, Dubois MP (1976) Ultrastructural localization of prolactin, growth hormone and luteinizing hormone by immunocytochemical techniques in the bovine pituitary. Cell Tissue Res 174:245–260. https://doi.org/10.1007/BF00222162

    CAS  Article  PubMed  Google Scholar 

  23. Dada MO, Campbell GT, Blake CA (1984) Pars distalis cell quantification in normal adult male and female rats. J Endocrinol 101:87–94

    CAS  Article  Google Scholar 

  24. de Lima AR et al (2007) Muscular dystrophy-related quantitative and chemical changes in adenohypophysis GH-cells in golden retrievers. Growth Horm IGF Res 17:480–491. https://doi.org/10.1016/j.ghir.2007.06.001

    CAS  Article  PubMed  Google Scholar 

  25. Deniz OG, Altun G, Kaplan AA, Yurt KK, von Bartheld CS, Kaplan S (2018) A concise review of optical, physical and isotropic fractionator techniques in neuroscience studies, including recent developments. J Neurosci Methods 310:45–53. https://doi.org/10.1016/j.jneumeth.2018.07.012

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ettrup KS et al (2011) Basic surgical techniques in the Gottingen minipig: intubation, bladder catheterization, femoral vessel catheterization, and transcardial perfusion. J vis Exp. https://doi.org/10.3791/2652

    Article  PubMed  PubMed Central  Google Scholar 

  27. Filippa V, Mohamed F (2006b) Immunohistochemical study of somatotrophs in pituitary pars distalis of male viscacha (Lagostomus maximus maximus) in relation to the gonadal activity. Cells Tissues Organs 184:188–197. https://doi.org/10.1159/000099626

    CAS  Article  PubMed  Google Scholar 

  28. Filippa V, Mohamed F (2006a) ACTH cells of pituitary pars distalis of viscacha (Lagostomus maximus maximus): immunohistochemical study in relation to season, sex, and growth. Gen Comp Endocrinol 146:217–225. https://doi.org/10.1016/j.ygcen.2005.11.012

    CAS  Article  PubMed  Google Scholar 

  29. Filippa V, Mohamed F (2010) Morphological and morphometric changes of pituitary lactotrophs of viscacha (Lagostomus maximus maximus) in relation to reproductive cycle, age, and sex. Anat Rec (hoboken) 293:150–161. https://doi.org/10.1002/ar.21013

    Article  Google Scholar 

  30. Francis SM, Venters SJ, Duxson MJ, Suttie JM (2000) Differences in pituitary cell number but not cell type between genetically lean and fat coopworth sheep. Domest Anim Endocrinol 18:229–239. https://doi.org/10.1016/s0739-7240(99)00081-8

    CAS  Article  PubMed  Google Scholar 

  31. Garcia-Navarro S, Malagon MM, Gracia-Navarro F (1988) Immunohistochemical localization of thyrotropic cells during amphibian morphogenesis: a stereological study. Gen Comp Endocrinol 71:116–123. https://doi.org/10.1016/0016-6480(88)90302-4

    CAS  Article  PubMed  Google Scholar 

  32. Glud AN et al (2011) Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Gottingen minipig CNS. Acta Neurobiol Exp (wars) 71:508–518

    Google Scholar 

  33. Glud AN, Bjarkam CR, Azimi N, Johe K, Sorensen JC, Cunningham M (2016) Feasibility of three-dimensional placement of human therapeutic stem cells using the intracerebral microinjection instrument. Neuromodul J Int Neuromodul Soc 19:708–716. https://doi.org/10.1111/ner.12484

    Article  Google Scholar 

  34. Goodman S, Check E (2002) The great primate debate. Nature 417:684–687. https://doi.org/10.1038/417684a

    CAS  Article  PubMed  Google Scholar 

  35. Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45

    CAS  Article  Google Scholar 

  36. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    CAS  Article  Google Scholar 

  37. Gundersen HJ et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881

    CAS  Article  Google Scholar 

  38. Harris GW (1948) Neural control of the pituitary gland. Physiol Rev 28:139–179. https://doi.org/10.1152/physrev.1948.28.2.139

    CAS  Article  PubMed  Google Scholar 

  39. Heidelbaugh JJ (2016) Endocrinology update: hypopituitarism. FP Essentials 451:25–30

    PubMed  Google Scholar 

  40. Heiman J (1938) The anterior pituitary gland in tumor-bearing rats. Am J Cancer 33:423–442. https://doi.org/10.1158/ajc.1938.423

    Article  Google Scholar 

  41. Heiman ML, Surface PL, Mowrey DH, DiMarchi RD (1990) Sexual dimorphic porcine pituitary response to growth hormone-releasing hormone. Domest Anim Endocrinol 7:273–276. https://doi.org/10.1016/0739-7240(90)90033-v

    CAS  Article  PubMed  Google Scholar 

  42. Hofmann I et al (2020) Linkage between growth retardation and pituitary cell morphology in a dystrophin-deficient pig model of Duchenne muscular dystrophy. Growth Horm IGF Res 51:6–16. https://doi.org/10.1016/j.ghir.2019.12.006

    CAS  Article  PubMed  Google Scholar 

  43. Hong GK, Payne SC, Jane JA Jr (2016) Anatomy, physiology, and laboratory evaluation of the pituitary gland. Otolaryngol Clin N Am 49:21–32. https://doi.org/10.1016/j.otc.2015.09.002

    Article  Google Scholar 

  44. Jensen KN, Deding D, Sorensen JC, Bjarkam CR (2009) Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Gottingen minipig. Acta Neurochir 151:785–794. https://doi.org/10.1007/s00701-009-0334-1

    Article  PubMed  Google Scholar 

  45. Jurado S, Console G, Gomez Dumm C (1998) Sexually dimorphic effects of aging on rat somatotroph cells. An immunohistochemical and ultrastructural study. J Vet Med Sci 60:705–711. https://doi.org/10.1292/jvms.60.705

    CAS  Article  PubMed  Google Scholar 

  46. Kasper RS, Shved N, Takahashi A, Reinecke M, Eppler E (2006) A systematic immunohistochemical survey of the distribution patterns of GH, prolactin, somatolactin, beta-TSH, beta-FSH, beta-LH, ACTH, and Alpha-MSH in the Adenohypophysis of Oreochromis Niloticus, the Nile Tilapia. Cell Tissue Res 325:303–313. https://doi.org/10.1007/s00441-005-0119-7

    CAS  Article  PubMed  Google Scholar 

  47. Kiki I, Altunkaynak BZ, Altunkaynak ME, Vuraler O, Unal D, Kaplan S (2007) Effect of high fat diet on the volume of liver and quantitative feature of Kupffer cells in the female rat: a stereological and ultrastructural study. Obes Surg 17:1381–1388. https://doi.org/10.1007/s11695-007-9219-7

    Article  PubMed  Google Scholar 

  48. Koeppen BM, Stanton BA, Levy MN, Berne RM (2018) Berne & Levy physiology

  49. Kovacs K, Horvath E, Asa SL, Stefaneanu L, Sano T (1989) Pituitary cells producing more than one hormone human pituitary adenomas. Trends Endocrinol Metab 1:104–107. https://doi.org/10.1016/1043-2760(89)90012-x

    CAS  Article  PubMed  Google Scholar 

  50. Kuwahara S, Sari DK, Tsukamoto Y, Tanaka S, Sasaki F (2004) Age-related changes in growth hormone (GH) cells in the pituitary gland of male mice are mediated by GH-releasing hormone but not by somatostatin in the hypothalamus. Brain Res 998:164–173. https://doi.org/10.1016/j.brainres.2003.10.060

    CAS  Article  PubMed  Google Scholar 

  51. Lee J-S (2006) Comparative study of immunocytochemical patterns of somatotrophs, mammotrophs, and mammosomatotrophs in the porcine anterior pituitary vol 1875. Digital Repository @ Iowa State University. http://lib.dr.iastate.edu/. https://doi.org/10.31274/rtd-180813-1876

  52. Lee JS, Jeftinija K, Jeftinija S, Stromer MH, Scanes CG, Anderson LL (2004) Immunocytochemical distribution of somatotrophs in porcine anterior pituitary. Histochem Cell Biol 122:571–577. https://doi.org/10.1007/s00418-004-0715-8

    CAS  Article  PubMed  Google Scholar 

  53. Lillethorup TP et al (2018) Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Exp Neurol 303:142–152. https://doi.org/10.1016/j.expneurol.2018.02.005

    CAS  Article  PubMed  Google Scholar 

  54. Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751. https://doi.org/10.1016/j.neubiorev.2007.02.003

    CAS  Article  PubMed  Google Scholar 

  55. Mai JRK, Paxinos G (2012) The human nervous system, 3rd edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  56. Meijer JC, Trudeau VL, Colenbrander B, Poot P, Erkens JH, Van de Wiel DF (1988) Prolactin in the developing pig. Biol Reprod 39:264–269. https://doi.org/10.1095/biolreprod39.2.264

    CAS  Article  PubMed  Google Scholar 

  57. Mikami S, Chiba S, Hojo H, Taniguchi K, Kubokawa K, Ishii S (1988) Immunocytochemical studies on the pituitary pars distalis of the Japanese long-fingered bat, Miniopterus schreibersii fuliginosus. Cell Tissue Res 251:291–299

    CAS  Article  Google Scholar 

  58. Milosevic V, Nestorovic N, Terzic M, Ristic N, Ajdzanovic V, Trifunovic S, Sekulic M (2009) Pituitary ACTH cells in female rats after neonatal treatment with SRIH-14. Folia Histochem Cytobiol 47:479–484. https://doi.org/10.2478/v10042-009-0104-1

    CAS  Article  PubMed  Google Scholar 

  59. Mitrofanova LB, Konovalov PV, Krylova JS, Polyakova VO, Kvetnoy IM (2017) Plurihormonal cells of normal anterior pituitary: facts and conclusions. Oncotarget 8:29282–29299. https://doi.org/10.18632/oncotarget.16502

    Article  PubMed  PubMed Central  Google Scholar 

  60. Molitch ME (2017) Diagnosis and treatment of pituitary adenomas: a review. JAMA 317:516–524. https://doi.org/10.1001/jama.2016.19699

    Article  PubMed  PubMed Central  Google Scholar 

  61. Musumeci G et al (2015) A journey through the pituitary gland: development, structure and function, with emphasis on embryo-foetal and later development. Acta Histochem 117:355–366. https://doi.org/10.1016/j.acthis.2015.02.008

    CAS  Article  PubMed  Google Scholar 

  62. Naik DR, Shirasawa N, Nogami H, Ishikawa H (1991) Immunohistochemistry of the pituitary pars distalis of the musk shrew, Suncus murinus. Gen Comp Endocrinol 84:27–35

    CAS  Article  Google Scholar 

  63. Nakane PK (1970) Classifications of anterior pituitary cell types with immunoenzyme histochemistry. J Histochem Cytochem 18:9–20. https://doi.org/10.1177/18.1.9

    CAS  Article  PubMed  Google Scholar 

  64. Nishimura S, Okano K, Yasukouchi K, Gotoh T, Tabata S, Iwamoto H (2000) Testis developments and puberty in the male Tokara (Japanese native) goat. Anim Reprod Sci 64:127–131. https://doi.org/10.1016/s0378-4320(00)00197-4

    CAS  Article  PubMed  Google Scholar 

  65. Norgaard Glud A et al (2010) Direct gene transfer in the Gottingen Minipig CNS Using stereotaxic lentiviral microinjections. Acta Neurobiol Exp (wars) 70:308–315

    Google Scholar 

  66. Orlowski D, Glud AN, Palomero-Gallagher N, Sorensen JCH, Bjarkam CR (2019) Online histological atlas of the Gottingen minipig brain. Heliyon 5:e01363. https://doi.org/10.1016/j.heliyon.2019.e01363

    Article  PubMed  PubMed Central  Google Scholar 

  67. Orstrup LH et al (2019) Towards a Gottingen minipig model of adult onset growth hormone deficiency: evaluation of stereotactic electrocoagulation method. Heliyon 5:e02892. https://doi.org/10.1016/j.heliyon.2019.e02892

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ozone C et al (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351. https://doi.org/10.1038/ncomms10351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Peter B, De Rijk EP, Zeltner A, Emmen HH (2016) Sexual maturation in the female Gottingen minipig. Toxicol Pathol 44:482–485. https://doi.org/10.1177/0192623315621413

    CAS  Article  PubMed  Google Scholar 

  70. Raus Balind S, Manojlovic-Stojanoski M, Milosevic V, Todorovic D, Nikolic L, Petkovic B (2016) Short- and long-term exposure to alternating magnetic field (50 Hz, 0.5 mT) affects rat pituitary ACTH cells: stereological study. Environ Toxicol 31:461–468. https://doi.org/10.1002/tox.22059

    CAS  Article  PubMed  Google Scholar 

  71. Rosendal F et al (2010) Defining the intercommissural plane and stereotactic coordinates for the Basal Ganglia in the Gottingen minipig brain. Stereotact Funct Neurosurg 88:138–146. https://doi.org/10.1159/000303526

    Article  PubMed  Google Scholar 

  72. Sasaki F, Iwama Y (1988) Sex difference in prolactin and growth hormone cells in mouse adenohypophysis: stereological, morphometric, and immunohistochemical studies by light and electron microscopy. Endocrinology 123:905–912. https://doi.org/10.1210/endo-123-2-905

    CAS  Article  PubMed  Google Scholar 

  73. Sauleau P, Lapouble E, Val-Laillet D, Malbert CH (2009) The pig model in brain imaging and neurosurgery. Anim. Int. J. Anim. Biosci. 3:1138–1151. https://doi.org/10.1017/S1751731109004649

    CAS  Article  Google Scholar 

  74. Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    CAS  Article  Google Scholar 

  75. Tan JH, Sasaki F (2000) Effect of age on immunocytochemical staining characteristics of adenohypophyseal cells in Mongolian pony mares and stallions. Am J Vet Res 61:826–831. https://doi.org/10.2460/ajvr.2000.61.826

    CAS  Article  PubMed  Google Scholar 

  76. Trifunovic S, Manojlovic-Stojanoski M, Ajdzanovic V, Nestorovic N, Ristic N, Medigovic I, Milosevic V (2014) Effects of genistein on stereological and hormonal characteristics of the pituitary somatotrophs in rats. Endocrine 47:869–877. https://doi.org/10.1007/s12020-014-0265-3

    CAS  Article  PubMed  Google Scholar 

  77. Trifunovic S et al (2016) Effects of prolonged alcohol exposure on somatotrophs and corticotrophs in adult rats: stereological and hormonal study. Acta Histochem 118:353–360. https://doi.org/10.1016/j.acthis.2016.03.005

    CAS  Article  PubMed  Google Scholar 

  78. Trifunovic S, Manojlovic-Stojanoski M, Nestorovic N, Ristic N, Sosic-Jurjevic B, Pendovski L, Milosevic V (2018) Histological and morphofunctional parameters of the hypothalamic–pituitary–adrenal system are sensitive to daidzein treatment in the adult rat. Acta Histochem 120:129–135. https://doi.org/10.1016/j.acthis.2017.12.006

    CAS  Article  PubMed  Google Scholar 

  79. Trouillas J, Guigard MP, Fonlupt P, Souchier C, Girod C (1996) Mapping of corticotropic cells in the normal human pituitary. J Histochem Cytochem 44:473–479. https://doi.org/10.1177/44.5.8627004

    CAS  Article  PubMed  Google Scholar 

  80. Vanputten LJA, Vanzwieten MJ, Mattheij JAM, Vankemenade JAM (1988) Studies on prolactin-secreting cells in aging rats of different strains. 1 Alterations in pituitary histology and serum prolactin levels as related to aging. Mech Ageing Dev 42:75–90. https://doi.org/10.1016/0047-6374(88)90064-4

    CAS  Article  Google Scholar 

  81. Vidal S, Roman A, Moya L (1997) Description of two types of mammosomatotropes in mink (Mustela vison) adenohypophysis: changes in the population of mammosomatotropes under different physiological conditions. Acta Anat (basel) 159:209–217. https://doi.org/10.1159/000147986

    CAS  Article  Google Scholar 

  82. Wang JF et al (2014) Establishment and characterization of dairy cow growth hormone secreting anterior pituitary cell model. In Vitro Cell Dev Biol Anim 50:103–110. https://doi.org/10.1007/s11626-013-9664-7

    CAS  Article  PubMed  Google Scholar 

  83. Watanabe H, Andersen F, Simonsen CZ, Evans SM, Gjedde A, Cumming P, DaNe XSG (2001) MR-based statistical atlas of the Gottingen minipig brain. Neuroimage 14:1089–1096. https://doi.org/10.1006/nimg.2001.0910

    CAS  Article  PubMed  Google Scholar 

  84. West MJ (2012) Basic stereology for biologists and neuroscientists. Cold Spring Harbor Laboratory Press

    Google Scholar 

  85. West MJ (2013) Tissue shrinkage and stereological studies. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.top071860

    Article  PubMed  Google Scholar 

  86. West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497. https://doi.org/10.1002/ar.1092310411

    CAS  Article  PubMed  Google Scholar 

  87. Willems C, Fu Q, Roose H, Mertens F, Cox B, Chen J, Vankelecom H (2016) Regeneration in the pituitary after cell-ablation injury: time-related aspects and molecular analysis. Endocrinology 157:705–721. https://doi.org/10.1210/en.2015-1741

    CAS  Article  PubMed  Google Scholar 

  88. Wolpert SM, Molitch ME, Goldman JA, Wood JB (1984) Size, shape, and appearance of the normal female pituitary gland. AJR Am J Roentgenol 143:377–381. https://doi.org/10.2214/ajr.143.2.377

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was conducted at the Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital. The authors sincerely thank the Department of Biomedicine, Aarhus University, for access to stereological facilities and acknowledge with gratitude the skillful assistance of Mrs. Trine W. Mikkelsen, Mrs. Lise M. Fitting, Mrs. Majken Sand, and Mrs. Anne Sofie Møller Andersen as well as the staff at Paaskehoejgaard. We would also express our gratitude to Lundbeck Foundation for funding this project.

Funding

Lundbeck Foundation and Clinical Institute, Aarhus University supported this study.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design, which was managed by ANG and JCS. JCS, HZ, LT, and DO collected the pituitary samples. Material preparation, histological processing, and data collection were planned and performed by LT, MW, and DO. LT, MW, CRB performed data analysis. The first draft of the manuscript was written by LT and DO, which was commented on and edited by MW, ANG, and CB. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Dariusz Orlowski.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were approved by and in accordance with the ethical standards of the Danish National Council of Animal Research Ethics (protocol number 2016-15-0201-00935).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 16916 KB)

Supplementary file2 (MP4 17299 KB)

Supplementary file3 (MP4 21429 KB)

Supplementary file4 (TIF 10734 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tvilling, L., West, M., Glud, A.N. et al. Anatomy and histology of the Göttingen minipig adenohypophysis with special emphasis on the polypeptide hormones: GH, PRL, and ACTH. Brain Struct Funct (2021). https://doi.org/10.1007/s00429-021-02337-1

Download citation

Keywords

  • Adenohypophysis
  • Growth hormone
  • Adrenocorticotropic hormone
  • Prolactin
  • Göttingen minipig
  • Stereology