Skip to main content
Log in

Optic flow selectivity in the macaque parieto-occipital sulcus

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

In humans, several neuroimaging studies have demonstrated that passive viewing of optic flow stimuli activates higher-level motion areas, like V6 and the cingulate sulcus visual area (CSv). In macaque, there are few studies on the sensitivity of V6 and CSv to egomotion compatible optic flow. The only fMRI study on this issue revealed selectivity to egomotion compatible optic flow in macaque CSv but not in V6 (Cotterau et al. Cereb Cortex 27(1):330–343, 2017, but see Fan et al. J Neurosci. 35:16303–16314, 2015). Yet, it is unknown whether monkey visual motion areas MT + and V6 display any distinctive fMRI functional profile relative to the optic flow stimulation, as it is the case for the homologous human areas (Pitzalis et al., Cereb Cortex 20(2):411–424, 2010). Here, we described the sensitivity of the monkey brain to two motion stimuli (radial rings and flow fields) originally used in humans to functionally map the motion middle temporal area MT + (Tootell et al. J Neurosci 15: 3215-3230, 1995a; Nature 375:139–141, 1995b) and the motion medial parietal area V6 (Pitzalis et al. 2010), respectively. In both animals, we found regions responding only to optic flow or radial rings stimulation, and regions responding to both stimuli. A region in the parieto-occipital sulcus (likely including V6) was one of the most highly selective area for coherently moving fields of dots, further demonstrating the power of this type of stimulation to activate V6 in both humans and monkeys. We did not find any evidence that putative macaque CSv responds to Flow Fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Data and materials will be made available on request.

References

  • Abdollahi RO, Kolster H, Glasser MF, Robinson EC, Coalson TS, Dierker D, Jenkinson M, Van Essen D, Orban GA (2014) Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99(100):509–524

    Article  PubMed  Google Scholar 

  • Anderson KC, Siegel RM (1999) Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J Neurosci 19:2681–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antal A, Baudewig J, Paulus W, Dechent P (2008) The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion. Vis Neurosci 25(01):17–26

    Article  CAS  PubMed  Google Scholar 

  • Arnoldussen DM, Goossens J, van den Berg AV (2011) Adjacent visual representations of self-motion in different reference frames. Proc Natl Acad Sci USA 108(28):11668–11673. https://doi.org/10.1073/pnas1102984108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A (2004a) Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 7:1190–1192

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp MS, Lee KE, Argall BD, Martin A (2004b) Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41:809–823

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp MS, Yasar NE, Frye RE, Ro T (2008) Touch, sound and vision in human superior temporal sulcus. Neuroimage 41:1011–1020

    Article  PubMed  Google Scholar 

  • Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495

    Article  CAS  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296

    Article  CAS  PubMed  Google Scholar 

  • Bruce C, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    Article  CAS  PubMed  Google Scholar 

  • Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973

    Article  PubMed  Google Scholar 

  • Cardin V, Smith AT (2011) Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. J Neurophysiol 106:1240–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardin V, Hemsworth L, Smith AT (2012a) Adaptation to heading direction dissociates the roles of human MST and V6 in the processing of optic flow. J Neurophysiol 108(3):794–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardin V, Sherrington R, Hemsworth L, Smith AT (2012b) Human V6: functional characterisation and localization. PLoS ONE 7(10):e47685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, DeAngelis GC, Angelaki DE (2011a) Representation of vestibular and visual cues to self-motion in ventral intraparietal cortex. J Neurosci 31:12036–12052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, DeAngelis GC, Angelaki DE (2011b) Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure. J Neurosci 31:11617–11627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeys KG, Lindsey DT, De Schutter E, Orban GA (2003) A higher order motion region in human inferior parietal lobule: evidence from fMRI. Neuron 40(3):631–642

    Article  CAS  PubMed  Google Scholar 

  • Cottereau BR, Smith AT, Rima S, Fize D, Héjja-Brichard Y, Renaud L, Lejards C, Vayssière N, Trotter Y, Durand JB (2017) Processing of egomotion-consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27(1):330–343. https://doi.org/10.1093/cercor/bhw412

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis GC, Angelaki DE (2012) Visual-Vestibular integration for self-motion perception. The neural bases of multisensory processes. CRC Press/Taylor & Francis, Boca Raton, pp 629–650

    Google Scholar 

  • Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248:164–189

    Article  CAS  PubMed  Google Scholar 

  • Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S (2021) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92

    Article  PubMed  Google Scholar 

  • Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827

    Article  CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65(6):1329–1345

    Article  CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6):1346–1359

    Article  CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1995) Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J Neurosci 15(7):5192–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136

    Article  CAS  PubMed  Google Scholar 

  • Eifuku S, Wurtz RH (1998) Response to motion in extrastriate area MSTl: center-surround interactions. J Neurophysiol 80(1):282–296

    Article  CAS  PubMed  Google Scholar 

  • Fan RH, Liu S, DeAngelis GC, Angelaki DE (2015) Heading tuning in Macaque Area V6. J Neurosci 35:16303–16314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field DT, Inman LA, Li L (2015) Visual processing of optic flow and motor control in the human posterior cingulate sulcus. Cortex 71:377–389

    Article  PubMed  Google Scholar 

  • Fischer E, Bülthoff HH, Logothetis NK, Bartels A (2012a) Visual motion responses in the posterior cingulate sulcus: a comparison to V5/MT and MST. Cereb Cortex 22(4):865–876

    Article  PubMed  Google Scholar 

  • Fischer E, Bülthoff HH, Logothetis NK, Bartels A (2012b) Human areas V3A and V6 compensate for self-induced planar visual motion. Neuron 73(6):1228–1240. https://doi.org/10.1016/j.neuron.2012.01.022

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  • Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112(10):2481–2491

    Article  PubMed  Google Scholar 

  • Furl N, Hadj-Bouziane F, Liu N, Averbeck BB, Ungerleider LG (2012) Dynamic and static facial expressions decoded from motion-sensitive areas in the macaque monkey. J Neurosci 32(45):15952–15962

  • Furlan M, Wann JP, Smith AT (2014) A representation of changing heading direction in human cortical areas pVIP and CSv. Cereb Cortex 24(11):2848–2858. https://doi.org/10.1093/cercor/bht132

    Article  PubMed  Google Scholar 

  • Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41:1717–1727

    Article  PubMed  Google Scholar 

  • Galletti C, Fattori P (2018) The dorsal visual stream revisited: stable circuits or dynamic pathways? Cortex. https://doi.org/10.1016/jcortex201701009 (in Press)

    Article  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1990) ‘Real-motion’ cells in area V3A of macaque visual cortex. Exp Brain Res 82:67–76

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Gamberini M, Kutz DF (1999) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11:3922–3936

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170

    Article  PubMed  Google Scholar 

  • Gattass R, Gross CG (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J Neurophysiol 46:621–638

    Article  CAS  PubMed  Google Scholar 

  • Gattass R, Sousa APB, Gross CG (1988) Visuotopic organization and extent of V3 and V4 of the macaque. J Neurosci 8:1831–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano MS, Andersen RA, Snowden RJ (1994) Tuning of MST neurons to spiral motions. J Neurosci 14(1):54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Cuturi LF, MacNeilage PR, Smith AT (2016) Multisensory integration in self motion perception. Multisens Res 29(6–7):525–556

    Article  Google Scholar 

  • Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259

    Article  CAS  PubMed  Google Scholar 

  • Hadj-Bouziane F, Bell AH, Knusten TA, Ungerleider LG, Tootell RB (2008) Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex. Proc Natl Acad Sci USA 105(14):5591–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh WM, Tootell RB, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci USA 109(52):E3640–E3648. https://doi.org/10.1073/pnas.1218406109 (Epub 2012 Nov 26)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadj-Bouziane F, Monfardini E, Guedj C, Gardechaux G, Hynaux C, Farnè A, Meunier M (2014) The helmet head restraint system: a viable solution for resting state fMRI in awake monkeys. Neuroimage 86:536–543. https://doi.org/10.1016/j.neuroimage.2013.09.068 (Epub 2013 Oct 8)

    Article  PubMed  Google Scholar 

  • Hagler DJ Jr, Sereno MI (2006) Spatial maps in frontal and prefrontal cortex. Neuroimage 29:567–577

    Article  PubMed  Google Scholar 

  • Hagler DJ Jr, Saygin AP, Sereno MI (2006) Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage 33:1093–1103

    Article  PubMed  Google Scholar 

  • Hejja-Brichard Y, Rima S, Rapha E, Durand J-B, Cottereau BR (2020) Stereomotion processing in the nonhuman primate. Cereb Cortex 30:4528–4543

    Article  PubMed  Google Scholar 

  • Helfrich RF, Becker HG, Haarmeier T (2013) Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex. Brain Topogr 26(2):247–263

    Article  PubMed  Google Scholar 

  • Huang RS, Chen CF, Sereno MI (2015) Neural substrates underlying the passive observation and active control of translational egomotion. J Neurosci 35(10):4258–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinschmidt A, Thilo KV, Büchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16(4):873–882

    Article  PubMed  Google Scholar 

  • Koenderink JJ (1986) Optic flow. Vis Res 26:161–168

    Article  CAS  PubMed  Google Scholar 

  • Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J Neurosci 34(31):10168–10191. https://doi.org/10.1523/JNEUROSCI.3288-13.2014.PMID:25080580;PMCID:PMC4115132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18:1779–1787

    Article  PubMed  Google Scholar 

  • Lagae L, Maes H, Raiguel S, Xiao D-K, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71:1597–1626

    Article  CAS  PubMed  Google Scholar 

  • Lappe M, Bremmer F, Pekel M, Thiele A, Hoffmann KP (1996) Optic flow processing in monkey STS: a theoretical and experimental approach. J Neurosci 16(19):6265–6285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morecraft RJ, Cipolloni PB, Stilwell-Morecraft KS, Gedney MT, Pandya DN (2004) Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey. J Comp Neurol 469(1):37–69

    Article  CAS  PubMed  Google Scholar 

  • Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC (2000) A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci 3:1322–1328

    Article  CAS  PubMed  Google Scholar 

  • Nakhla N, Korkian Y, Krause MR, Pack CC (2021) Neural selectivity for visual motion in Macaque Area V3A. eNeuro 8(1):1–14

    Article  CAS  Google Scholar 

  • Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 26(22):5929–5947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6(2):99–116

    Article  CAS  PubMed  Google Scholar 

  • Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci USA 89(7):2595–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768

    Article  PubMed  Google Scholar 

  • Palmer SM, Rosa MG (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24(8):2389–2405

    Article  CAS  PubMed  Google Scholar 

  • Paolini M, Distler C, Bremmer F, Lappe M, Hoffmann K-P (2000) Responses to continuously changing optic flow in area MST. J Neurophysiol 84(2):730–743

    Article  CAS  PubMed  Google Scholar 

  • Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area V6. J Neurosci 26:7962–7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20(2):411–424

    Article  CAS  PubMed  Google Scholar 

  • Pitzalis S, Strappini F, De Gasperis M, Bultrini A, Di Russo F (2012) Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS ONE 7(4):e3577

    Article  CAS  Google Scholar 

  • Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F (2013a) Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 67:89–100

    Article  PubMed  Google Scholar 

  • Pitzalis S, Fattori P, Galletti C (2013b) The functional role of the medial motion area V6. Front Behav Neurosci 6:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galletti C, Galati G (2013c) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C (2013d) The human homologue of macaque area V6A. Neuroimage 82:517–530

    Article  CAS  PubMed  Google Scholar 

  • Pitzalis S, Fattori P, Galletti C (2015) The human cortical areas V6 and V6A. Vis Neurosci 32:E007

    Article  PubMed  Google Scholar 

  • Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092

    Article  PubMed  Google Scholar 

  • Pitzalis S, Serra C, Sulpizio V, Committeri G, de Pasquale F, Fattori P, Galletti C, Sepe R, Galati G (2020) Neural bases of self- and object-motion in a naturalistic vision. Hum Brain Mapp. https://doi.org/10.1002/hbm.24862

    Article  PubMed  Google Scholar 

  • Previc FH (1998) The neuropsychology of 3-D space. Psychol Bull 124(2):123–164

    Article  CAS  PubMed  Google Scholar 

  • Previc FH, Liotti M, Blakemore C, Beer J, Fox P (2000) Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Exp Brain Res 131(4):393–405

    Article  CAS  PubMed  Google Scholar 

  • Raffi M, Squatrito S, Maioli MG (2002) Neuronal responses to optic flow in the monkey parietal area Pec. Cereb Cortex 12:639–646

    Article  PubMed  Google Scholar 

  • Raffi M, Maioli MG, Squatrito S (2011) Optic flow direction coding in area PEc of the behaving monkey. Neuroscience 194:136–149

    Article  CAS  PubMed  Google Scholar 

  • Rosa MG, Tweedale R (2001) The dorsomedial visual areas in new world and old world monkeys: homology and function. Eur J Neurosci 13(3):421–427

    Article  CAS  PubMed  Google Scholar 

  • Rushton SK, Warren PA (2005) Moving observers, relative retinal motion and the detection of object movement. Curr Biol 15(14):R542–R543

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1):145–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, McDonald CT, Allman JM (1994) Analysis of retinotopic maps in extrastriate cortex. Cereb Cortex 4:601–620

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RBH (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Serra C, Galletti C, Di Marco S, Fattori P, Galati G, Sulpizio V, Pitzalis S (2019) Egomotion-related visual areas respond to active leg movements. Hum Brain Mapp. https://doi.org/10.1002/hbm.24589

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel RM, Read HL (1997) Analysis of optic flow in the monkey parietal area 7a. Cereb Cortex 7(4):327–346

    Article  CAS  PubMed  Google Scholar 

  • Smith T, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23:561–569

    Article  CAS  PubMed  Google Scholar 

  • Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22(5):1068–1077

    Article  PubMed  Google Scholar 

  • Sousa AP, Pinon MC, Gattass R, Rosa MG (1991) Topographic organization of cortical input to striate cortex in the Cebus monkey: a fluorescent tracer study. J Comp Neurol 308(4):665–682

    Article  CAS  PubMed  Google Scholar 

  • Strappini F, Pitzalis S, Snyder AZ, McAvoy MP, Sereno MI, Corbetta M, Shulman GL (2015) Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction. Brain Struct Funct 220(5):2587–2601

    Article  PubMed  Google Scholar 

  • Strappini F, Gilboa E, Pitzalis S, Kay K, McAvoy M, Nehorai A, Snyder AZ (2017) Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data. Hum Brain Mapp 38(3):1438–1459

    Article  PubMed  Google Scholar 

  • Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S (2020) A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 225:2091–2110 (in press)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127:355–370

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3):626–641

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6(1):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Fukada Y, Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the MST area of the macaque monkey. J Neurophysiol 62:642–656

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Sugita Y, Moriya M, Saito H (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex. J Neurophysiol 69(1):128–142

    Article  CAS  PubMed  Google Scholar 

  • Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995a) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tootell RBH, Reppas JB, Dale AM, Malach R, Look RB, Jiang HJ, Brady TJ, Rosen BR (1995b) Visual motion aftereffect in human cortical area MT/V5 revealed by functional magnetic resonance imaging. Nature 375:139–141

    Article  CAS  PubMed  Google Scholar 

  • Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17:7076–7078

    Article  Google Scholar 

  • Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220(6):3307–3321

    Article  PubMed  Google Scholar 

  • Van Essen DC, Maunsell HR, Bixby JL (1981) The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J Comp Neurol 199:293–326

    Article  PubMed  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577

    Article  CAS  PubMed  Google Scholar 

  • Vanduffel W, Zhu Q, Orban GA (2014) Monkey Cortex through fMRI Glasses. Neuron 83(3):533–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada A, Sakano Y, Ando H (2016) Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation. Front Psychol 7:309

    Article  PubMed  PubMed Central  Google Scholar 

  • Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194

    Article  CAS  PubMed  Google Scholar 

  • Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27:2747–2757

    Article  PubMed  Google Scholar 

  • Warren PA, Rushton SK (2008) Evidence for flow-parsing in radial flow displays. Vis Res 48(5):655–663

    Article  PubMed  Google Scholar 

  • Warren PA, Rushton SK (2009a) Optic flow processing for the assessment of object movement during ego movement. Curr Biol 19(18):1555–1560. https://doi.org/10.1016/j.cub.2009.07.057

    Article  CAS  PubMed  Google Scholar 

  • Warren PA, Rushton SK (2009b) Perception of scene-relative object movement: optic flow parsing and the contribution of monocular depth cues. Vis Res 49(11):1406–1419. https://doi.org/10.1016/j.visres.2009.01.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Marty Sereno for helping with the visual stimulation.

Funding

The work was supported by the University of Foro Italico, Rome, Grant to SP (CDR2.FFABR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Pitzalis.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The study was approved by French Animal Experimentation Ethics Committee #42 (CELYNE).

Ethical standards

The study was carried out in accordance with European Union Directive 2010/63/EU.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitzalis, S., Hadj-Bouziane, F., Dal Bò, G. et al. Optic flow selectivity in the macaque parieto-occipital sulcus. Brain Struct Funct 226, 2911–2930 (2021). https://doi.org/10.1007/s00429-021-02293-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02293-w

Keywords

Navigation