Skip to main content
Log in

Hemispheric asymmetries in visual mental imagery

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Visual mental imagery is the faculty whereby we can “visualize” objects that are not in our line of sight. Longstanding evidence dating back over thirty years has shown that unilateral brain lesions, especially in the left temporal lobe, can impair aspects of this ability. Yet, there is currently no attempt to identify analogies between these neuropsychological findings of hemispheric asymmetry and those from other neuroscientific approaches. Here, we present a critical review of the available literature on the hemispheric laterality of visual mental imagery, by looking at cross-method patterns of evidence in the domains of lesion neuropsychology, neuroimaging, and direct cortical stimulation. Results can be summarized under three main axes. First, frontoparietal networks in both hemispheres appear to be associated with visual mental imagery. Second, lateralization patterns emerge in the temporal lobes, with the left inferior temporal lobe being the most common finding in the literature for endogenously generated images, especially, but not exclusively, when orthographic material is used to ignite imagery. Third, an opposite pattern of hemispheric laterality emerges when visual mental images are induced by exogenous stimulation; direct cortical electrical stimulation tends to produce visual imagery experiences predominantly when applied to the right temporal lobe. These patterns of hemispheric asymmetry are difficult to reconcile with the dominant model of visual mental imagery, which emphasizes the implication of early sensory cortices. They suggest instead that visual mental imagery relies on large-scale brain networks, with a crucial participation of high-level visual regions in the temporal lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison T, Begleiter A, McCarthy G, Roessler E, Nobre AC, Spencer DD (1993) Electrophysiological studies of color processing in human visual cortex. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 88:343–355

    CAS  Google Scholar 

  • Allison T, Ginter H, McCarthy G, Nobre AC, Puce A et al (1994) Face recognition in human extrastriate cortex. J Neurophysiol 71:821–825

    CAS  PubMed  Google Scholar 

  • Andelman-Gur MM, Gazit T, Andelman F, Kipervasser S, Kramer U et al (2019) Spatial distribution and hemispheric asymmetry of electrically evoked experiential phenomena in the human brain. J Neurosurg 1–9

  • Andelman-Gur MM, Gazit T, Strauss I, Fried I, Fahoum F (2020) Stimulating the inferior fronto-occipital fasciculus elicits complex visual hallucinations. Brain Stimusl Basic Transl Clin Res Neuromodulation 13:1577–1579

    Google Scholar 

  • Bancaud J, Brunet-Bourgin F, Chauvel P, Halgren E (1994) Anatomical origin of deja vu and vivid “memories” in human temporal lobe epilepsy. Brain 117(Pt 1):71–90

    PubMed  Google Scholar 

  • Barnes J, Howard RJ, Senior C, Brammer M, Bullmore ET et al (2000) Cortical activity during rotational and linear transformations. Neuropsychologia 38:1148–1156

    CAS  PubMed  Google Scholar 

  • Bartolomeo P (2002) The relationship between visual perception and visual mental imagery: a reappraisal of the neuropsychological evidence. Cortex 38:357–378

    PubMed  Google Scholar 

  • Bartolomeo P (2008) The neural correlates of visual mental imagery: an ongoing debate. Cortex 44:107–108

    PubMed  Google Scholar 

  • Bartolomeo P (2011) The quest for the “critical lesion site” in cognitive deficits: problems and perspectives. Cortex 47:1010–1012

    PubMed  Google Scholar 

  • Bartolomeo P (2020) Penser droit. Flammarion, Paris

    Google Scholar 

  • Bartolomeo P (2021) Visual agnosia and imagery after Lissauer. Brain. https://doi.org/10.1093/brain/awab159

    Article  PubMed  Google Scholar 

  • Bartolomeo P, Chokron S (2002) Can we change our vantage point to explore imaginal neglect? (Commentary on Pylyshyn: Mental imagery: In search of a theory). Behav Brain Sci 25:184–185

    Google Scholar 

  • Bartolomeo P, Seidel MT (2019) Hemispheric lateralization of attention processes in the human brain. Curr Opin Psychol 29C:90–96

    Google Scholar 

  • Bartolomeo P, D’Erme P, Gainotti G (1994) The relationship between visuospatial and representational neglect. Neurology 44:1710–1714

    CAS  PubMed  Google Scholar 

  • Bartolomeo P, Bachoud-Lévi AC, de Gelder B, Denes G, Dalla Barba G et al (1998) Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia 36:239–249

    CAS  PubMed  Google Scholar 

  • Bartolomeo P, Bachoud-Lévi AC, Chokron S, Degos JD (2002) Visually- and motor-based knowledge of letters: evidence from a pure alexic patient. Neuropsychologia 40:1363–1371

    PubMed  Google Scholar 

  • Bartolomeo P, Bachoud-Lévi A-C, Azouvi P, Chokron S (2005) Time to imagine space: a chronometric exploration of representational neglect. Neuropsychologia 43:1249–1257

    PubMed  Google Scholar 

  • Bartolomeo P, Seidel Malkinson T, de Vito S (2017) Botallo’s error, or the quandaries of the universality assumption. Cortex 86:176–185

    PubMed  Google Scholar 

  • Bartolomeo P, Hajhajate D, Liu J, Spagna A (2020) Assessing the causal role of early visual areas in visual mental imagery. Nat Rev Neurosci 21:517

    CAS  PubMed  Google Scholar 

  • Bassett DS, Cullen KE, Eickhoff SB, Farah MJ, Goda Y et al (2020) Reflections on the past two decades of neuroscience. Nat Rev Neurosci 1–11

  • Belardinelli MO, Palmiero M, Sestieri C, Nardo D, Di Matteo R et al (2009) An fMRI investigation on image generation in different sensory modalities: the influence of vividness. Acta Physiol (Oxf) 132:190–200

    Google Scholar 

  • Bien N, Sack AT (2014) Dissecting hemisphere-specific contributions to visual spatial imagery using parametric brain mapping. Neuroimage 94:231–238

    PubMed  Google Scholar 

  • Bisiach E, Luzzatti C (1978) Unilateral neglect of representational space. Cortex 14:129–133

    CAS  PubMed  Google Scholar 

  • Blanke O, Landis T, Seeck M (2000) Electrical cortical stimulation of the human prefrontal cortex evokes complex visual hallucinations. Epilepsy Behav 1:356–361

    CAS  PubMed  Google Scholar 

  • Boccia M, Piccardi L, Palermo L, Nemmi F, Sulpizio V et al (2015) A penny for your thoughts! Patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum Brain Mapp 36:945–958

    PubMed  Google Scholar 

  • Boly M, Coleman MR, Davis M, Hampshire A, Bor D et al (2007) When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. Neuroimage 36:979–992

    CAS  PubMed  Google Scholar 

  • Bourlon C, Pradat-Diehl P, Duret C, Azouvi P, Bartolomeo P (2008) Seeing and imagining the “same” objects in unilateral neglect. Neuropsychologia 46:2602–2606

    PubMed  Google Scholar 

  • Bourlon C, Duret C, Pradat-Diehl P, Azouvi P, Loeper-Jeny C et al (2011) Vocal response times to real and imagined stimuli in spatial neglect: a group study and single-case report. Cortex 47:536–546

    PubMed  Google Scholar 

  • Broca P (1865) Sur le siège de la faculté du langage articulé. Bulletins de la Société d’Anthropologie de Paris 6:377–393

    Google Scholar 

  • Caramazza A, McCloskey M (1988) The case for single-patient studies. Cogn Neuropsychol 5:517–527

    Google Scholar 

  • Cohen L, Verstichel P, Pierrot-Deseilligny C (1992) Hallucinatory vision of a familiar face following right temporal hemorrhage. Neurology 42:2052

    CAS  PubMed  Google Scholar 

  • Creem-Regehr SH, Neil JA, Yeh HJ (2007) Neural correlates of two imagined egocentric transformations. Neuroimage 35:916–927

    PubMed  Google Scholar 

  • Daselaar SM, Porat Y, Huijbers W, Pennartz CM (2010) Modality-specific and modality-independent components of the human imagery system. Neuroimage 52:677–685

    PubMed  Google Scholar 

  • Deacon D, Grose-Fifer J, Yang CM, Stanick V, Hewitt S, Dynowska A (2004) Evidence for a new conceptualization of semantic representation in the left and right cerebral hemispheres. Cortex 40:467–478

    PubMed  Google Scholar 

  • D’Esposito M, Detre JA, Aguirre GK, Stallcup M, Alsop DC et al (1997) A functional MRI study of mental image generation. Neuropsychologia 35:725–730

    CAS  PubMed  Google Scholar 

  • Dhindsa K, Drobinin V, King J, Hall GB, Burgess N, Becker S (2014) Examining the role of the temporo-parietal network in memory, imagery, and viewpoint transformations. Front Hum Neurosci 8:709

    PubMed  PubMed Central  Google Scholar 

  • Dobelle W, Mladejovsky M (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlichman H, Barrett J (1983) Right hemispheric specialization for mental imagery: a review of the evidence. Brain Cogn 2:55–76

    CAS  PubMed  Google Scholar 

  • Etcoff NL, Freeman R, Cave KL (1991) Can we lose memories of faces? Content specificity and awareness in a prosopagnosic. J Cogn Neurosci 3:25–41

    CAS  PubMed  Google Scholar 

  • Farah MJ (1984) The neurological basis of mental imagery: a componential analysis. Cognition 18:245–272

    CAS  PubMed  Google Scholar 

  • Farah MJ (1986) The laterality of mental image generation: a test with normal subjects. Neuropsychologia 24:541–551

    CAS  PubMed  Google Scholar 

  • Farrell DF, Leeman S, Ojemann GA (2007) Study of the human visual cortex: direct cortical evoked potentials and stimulation. J Clin Neurophysiol 24:1–10

    PubMed  Google Scholar 

  • Fish DR, Gloor P, Quesney FL, Olivier A (1993) Clinical responses to electrical brain stimulation of the temporal and frontal lobes in patients with epilepsy. Pathophysiol Implics Brain 116(Pt 2):397–414

    Google Scholar 

  • Formisano E, Linden DE, Di Salle F, Trojano L, Esposito F et al (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35:185–194

    CAS  PubMed  Google Scholar 

  • Ganis G, Schendan HE (2008) Visual mental imagery and perception produce opposite adaptation effects on early brain potentials. Neuroimage 42:1714–1727

    PubMed  Google Scholar 

  • Ganis G, Thompson WL, Kosslyn SM (2004) Brain areas underlying visual mental imagery and visual perception: an fMRI study. Brain Res Cogn Brain Res 20:226–241

    PubMed  Google Scholar 

  • Gardini S, De Beni R, Cornoldi C, Bromiley A, Venneri A (2005) Different neuronal pathways support the generation of general and specific mental images. Neuroimage 27:544–552

    PubMed  Google Scholar 

  • Gauthier B, Prabhu P, Kotegar KA, van Wassenhove V (2020) Hippocampal contribution to ordinal psychological time in the human brain. J Cogn Neurosci 32:2071–2086

    PubMed  Google Scholar 

  • Gloor P, Olivier A, Quesney LF, Andermann F, Horowitz S (1982) The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Ann Neurol 12:129–144

    CAS  PubMed  Google Scholar 

  • Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573

    CAS  PubMed  Google Scholar 

  • Grose-Fifer J, Deacon D (2004) Priming by natural category membership in the left and right cerebral hemispheres. Neuropsychologia 42:1948–1960

    PubMed  Google Scholar 

  • Guariglia C, Padovani A, Pantano P, Pizzamiglio L (1993) Unilateral neglect restricted to visual imagery. Nature 364:235–237

    CAS  PubMed  Google Scholar 

  • Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J (2009) Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 30:2157–2172

    PubMed  Google Scholar 

  • Gulyás B (2001) Neural networks for internal reading and visual imagery of reading: a PET study. Brain Res Bull 54:319–328

    PubMed  Google Scholar 

  • Hamamé CM, Vidal JR, Ossandón T, Jerbi K, Dalal SS et al (2012) Reading the mind’s eye: online detection of visuo-spatial working memory and visual imagery in the inferior temporal lobe. Neuroimage 59:872–879

    PubMed  Google Scholar 

  • Handy T, Miller M, Schott B, Shroff N, Janata P et al (2004) Visual imagery and memory: do retrieval strategies affect what the mind’s eye sees? Eur J Cogn Psychol 16:631–652

    Google Scholar 

  • Hawes Z, Sokolowski HM, Ononye CB, Ansari D (2019) Neural underpinnings of numerical and spatial cognition: an fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci Biobehav Rev 103:316–336

    PubMed  Google Scholar 

  • Howard RJ, Barnes J, McKeefry D, Ha Y, Woodruff PW et al (1998) The functional anatomy of imagining and perceiving colour. NeuroReport 9:1019–1023

    CAS  PubMed  Google Scholar 

  • Hughlings JJ (1888) On a particular variety of epilepsy (“Intellectual Aura”), one case with symptoms of organic brain disease. Brain 11:179–207

    Google Scholar 

  • Hughlings JJ (1931) Selected writings. On epilepsy and epileptiform convulsions

  • Hughlings Jackson J, Stewart P (1899) Epileptic Attacks with a Warning of a Crude Sensation of Smell and with the Intellectual Aura (Dreamy State) in a Patient Who Had Symptoms Pointing to Gross Organic Disease of the Right Temporo-Sphenoidal Lobe. Brain 22:534–549

    Google Scholar 

  • Ishai A, Ungerleider LG, Haxby JV (2000) Distributed neural systems for the generation of visual images. Neuron 28:979–990

    CAS  PubMed  Google Scholar 

  • Iturria-Medina Y, Pérez Fernández A, Morris DM, Canales-Rodríguez EJ, Haroon HA et al (2011) Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates. Cereb Cortex 21:56–67

    PubMed  Google Scholar 

  • Jasper HH, Rasmussen T (1958) Studies of clinical and electrical responses to deep temporal stimulation in man with some considerations of functional anatomy. Res Publ Assoc Res Nervous Mental Dis 36:316–334

    CAS  Google Scholar 

  • Jonas J, Frismand S, Vignal JP, Colnat-Coulbois S, Koessler L et al (2014) Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum Brain Mapp 35:3360–3371

    PubMed  Google Scholar 

  • Jonas J, Rossion B, Brissart H, Frismand S, Jacques C et al (2015) Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex 72:140–155

    PubMed  Google Scholar 

  • Jordan K, Heinze HJ, Lutz K, Kanowski M, Jäncke L (2001) Cortical activations during the mental rotation of different visual objects. Neuroimage 13:143–152

    CAS  PubMed  Google Scholar 

  • Kellenbach ML, Brett M, Patterson K (2001) Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge. Cogn Affect Behav Neurosci 1:207–221

    CAS  PubMed  Google Scholar 

  • Kilintari M, Narayana S, Babajani-Feremi A, Rezaie R, Papanicolaou AC (2016) Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res 1646:249–261

    CAS  PubMed  Google Scholar 

  • Kim S-E, Kim J-W, Kim J-J, Jeong BS, Choi EA et al (2007) The neural mechanism of imagining facial affective expression. Brain Res 1145:128–137

    CAS  PubMed  Google Scholar 

  • Kosslyn SM, Holtzman JD, Farah MJ, Gazzaniga MS (1985) A computational analysis of mental image generation: evidence from functional dissociations in split-brain patients. J Exp Psychol Gen 114:311–341

    CAS  PubMed  Google Scholar 

  • Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press. vi, New York, pp 248–vi

    Google Scholar 

  • Kravitz DJ, Saleem KS, Baker CI, Ungerleider LG, Mishkin M (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49

    PubMed  Google Scholar 

  • Kreiman G, Koch C, Fried I (2000) Imagery neurons in the human brain. Nature 408:357–61

    CAS  PubMed  Google Scholar 

  • Kukolja J, Marshall JC, Fink GR (2006) Neural mechanisms underlying spatial judgements on seen and imagined visual stimuli in the left and right hemifields in men. Neuropsychologia 44:2846–60

    PubMed  Google Scholar 

  • Lambert S, Sampaio E, Scheiber C, Mauss Y (2002) Neural substrates of animal mental imagery: calcarine sulcus and dorsal pathway involvement—an fMRI study. Brain Res 924:176–83

    CAS  PubMed  Google Scholar 

  • Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42

    Google Scholar 

  • Lamp G, Alexander B, Laycock R, Crewther DP, Crewther SG (2016) Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study. Front Behav Neurosci 10

  • Lee HW, Hong SB, Seo DW, Tae WS, Hong SC (2000) Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology 54:849–54

    CAS  PubMed  Google Scholar 

  • Levine DN, Warach J, Farah M (1985) Two visual systems in mental imagery: dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35:1010–8

    CAS  PubMed  Google Scholar 

  • Logie RH, Pernet CR, Buonocore A, Della SS (2011) Low and high imagers activate networks differentially in mental rotation. Neuropsychologia 49:3071–7

    PubMed  Google Scholar 

  • Mahon BZ, Caramazza A (2011) What drives the organization of object knowledge in the brain? Trends Cogn Sci 15:97–103

    PubMed  PubMed Central  Google Scholar 

  • Marinkovic K, Trebon P, Chauvel P, Halgren E (2000) Localised face processing by the human prefrontal cortex: face-selective intracerebral potentials and post-lesion deficits. Cogn Neuropsychol 17:187–99

    CAS  PubMed  Google Scholar 

  • Mazard A, Laou L, Joliot M, Mellet E (2005) Neural impact of the semantic content of visual mental images and visual percepts. Cogn Brain Res 24:423–35

    CAS  Google Scholar 

  • McNorgan C (2012) A meta-analytic review of multisensory imagery identifies the neural correlates of modality-specific and modality-general imagery. Front Hum Neurosci 6:285

    PubMed  PubMed Central  Google Scholar 

  • Mégevand P, Groppe DM, Goldfinger MS, Hwang ST, Kingsley PB et al (2014) Seeing Scenes: topographic visual hallucinations evoked by direct electrical stimulation of the parahippocampal place area. J Neurosci 34:5399–405

    PubMed  PubMed Central  Google Scholar 

  • Mellet E, Bricogne S, Tzourio-Mazoyer N, Ghaem O, Petit L et al (2000) Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage 12:588–600

    CAS  PubMed  Google Scholar 

  • Moriarity JL, Boatman D, Krauss GL, Storm PB, Lenz FA (2001) Human “memories” can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. J Neurol Neurosurg Psychiatry 71:549–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moro V, Berlucchi G, Lerch J, Tomaiuolo F, Aglioti SM (2008) Selective deficit of mental visual imagery with intact primary visual cortex and visual perception. Cortex 44:109–18

    PubMed  Google Scholar 

  • Mullan S, Penfield W (1959) Illusions of comparative interpretation and emotion; production by epileptic discharge and by electrical stimulation in the temporal cortex. AMA Arch Neurol Psychiatry 81:269–84

    CAS  PubMed  Google Scholar 

  • Murphey DK, Yoshor D, Beauchamp MS (2008) Perception matches selectivity in the human anterior color center. Curr Biol 18(3):216–220

    CAS  PubMed  Google Scholar 

  • Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci 106:5389–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman SD, Klatzky RL, Lederman SJ, Just MA (2005) Imagining material versus geometric properties of objects: an fMRI study. Brain Res Cogn Brain Res 23:235–46

    PubMed  Google Scholar 

  • O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12:1013–23

    CAS  PubMed  Google Scholar 

  • Pearson J (2019) The human imagination: the cognitive neuroscience of visual mental imagery. Nat Rev Neurosci 20:624–34

    CAS  PubMed  Google Scholar 

  • Pearson J (2020) Reply to: assessing the causal role of early visual areas in visual mental imagery. Nat Rev Neurosci 21:517–8

    CAS  PubMed  Google Scholar 

  • Penfield W (1938) The cerebral cortex in man: I. The cerebral cortex and consciousness. Arch Neurol Psychiatry 40:417–42

    Google Scholar 

  • Penfield W, Perot P (1963) The Brain’s record of auditory and visual experience. A final summary and discussion. Brain 86:595–696

    CAS  PubMed  Google Scholar 

  • Puce A, Allison T, McCarthy G (1999) Electrophysiological studies of human face perception. III: effects of top-down processing on face-specific potentials. Cereb Cortex 9:445–58

    CAS  PubMed  Google Scholar 

  • Pyke AA, Fincham JM, Anderson JR (2017) When math operations have visuospatial meanings versus purely symbolic definitions: which solving stages and brain regions are affected? Neuroimage 153:319–35

    PubMed  Google Scholar 

  • Reilly M, Machado N, Blumstein SE (2015) Hemispheric lateralization of semantic feature distinctiveness. Neuropsychologia 75:99–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rode G, Cotton F, Revol P, Jacquin-Courtois S, Rossetti Y, Bartolomeo P (2010) Representation and disconnection in imaginal neglect. Neuropsychologia 48:2903–11

    CAS  PubMed  Google Scholar 

  • Rousseaux M, Debrock D, Cabaret M, Steinling M (1994) Visual hallucinations with written words in a case of left parietotemporal lesion. J Neurol Neurosurg Psychiatry 57:1268–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaoka T, Mizuhara H, Inui T (2014) Dynamic parieto-premotor network for mental image transformation revealed by simultaneous EEG and fMRI measurement. J Cogn Neurosci 26:232–46

    PubMed  Google Scholar 

  • Schulz R, Woermann FG, Ebner A (2007) When written words become moving pictures: complex visual hallucinations on stimulation of the lateral occipital lobe. Epilepsy Behav 11:147–51

    PubMed  Google Scholar 

  • Selimbeyoglu A, Parvizi J. 2010. Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature. Front Hum Neurosci 4

  • Shallice T (1988) From Neuropsychology to Mental Structure. Cambridge University Press, New York

    Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–3

    CAS  PubMed  Google Scholar 

  • Spagna A, Mackie M-A, Fan J (2015) Supramodal executive control of attention. Front Psychol 6:65

    PubMed  PubMed Central  Google Scholar 

  • Spagna A, Wu T, Kim K, Fan J (2020b) Supramodal executive control of attention: evidence from unimodal and crossmodal dual conflict effects. Cortex 133:266–76

    PubMed  Google Scholar 

  • Spagna A, Hajhajate D, Liu J, Bartolomeo P (2020a) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. bioRxiv: 2020.02.06.937151

  • Spagna A, Hajhajate D, Liu J, Bartolomeo P (2021) Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: a meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev 122:201–17

    PubMed  Google Scholar 

  • Steel A, Billings MM, Silson EH, Robertson CE (2020) A network linking perception and memory systems in posterior cerebral cortex. bioRxiv: 2020.05.25.115147

  • Stokes M, Thompson R, Cusack R, Duncan J (2009) Top-down activation of shape-specific population codes in visual cortex during mental imagery. J Neurosci 29:1565–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson-Schill S, Aguirre G, Desposito M, Farah M (1999) A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia 37:671–6

    CAS  PubMed  Google Scholar 

  • Thorudottir S, Sigurdardottir HM, Rice GE, Kerry SJ, Robotham RJ et al (2020) The architect who lost the ability to imagine: the cerebral basis of visual imagery. Brain Sci 10:59

    PubMed Central  Google Scholar 

  • Trojano L, Grossi D, Linden DEJ, Formisano E, Hacker H et al (2000) Matching two imagined clocks: the functional anatomy of spatial analysis in the absence of visual stimulation. Cereb Cortex 10:473–81

    CAS  PubMed  Google Scholar 

  • Vallortigara G, Versace E. 2017. Laterality at the neural, cognitive, and behavioral levels. In: APA handbook of comparative psychology: Basic concepts, methods, neural substrate, and behavior, Vol 1. Washington, DC, US: American Psychological Association, pp 557–77

  • VanRullen R, Reddy L (2019) Reconstructing faces from fMRI patterns using deep generative neural networks. Commun Biol s2

  • Vignal J, Chauvel P, Halgren E (2000) Localised face processing by the human prefrontal cortex: stimulation-evoked hallucinations of faces. Cogn Neuropsychol 17:281–91

    CAS  PubMed  Google Scholar 

  • Vignal JP, Maillard L, McGonigal A, Chauvel P (2007) The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 130:88–99

    PubMed  Google Scholar 

  • Whittingstall K, Bernier M, Houde JC, Fortin D, Descoteaux M (2014) Structural network underlying visuospatial imagery in humans. Cortex 56:85–98

    PubMed  Google Scholar 

  • Winlove CIP, Milton F, Ranson J, Fulford J, MacKisack M et al (2018) The neural correlates of visual imagery: a co-ordinate-based meta-analysis. Cortex 105:4–25

    PubMed  Google Scholar 

  • Wu T, Spagna A, Chen C, Schulz KP, Hof PR, Fan J (2020) Supramodal mechanisms of the cognitive control network in uncertainty processing. Cereb Cortex 30:6336–49

    PubMed  PubMed Central  Google Scholar 

  • Yomogida Y, Sugiura M, Watanabe J, Akitsuki Y, Sassa Y et al (2004) Mental visual synthesis is originated in the fronto-temporal network of the left hemisphere. Cereb Cortex 14:1376–83

    PubMed  Google Scholar 

  • Zeman AZ, Della Sala S, Torrens LA, Gountouna VE, McGonigle DJ, Logie RH (2010) Loss of imagery phenomenology with intact visuo-spatial task performance: a case of “blind imagination.” Neuropsychologia 48:145–55

    PubMed  Google Scholar 

  • Zvyagintsev M, Clemens B, Chechko N, Mathiak KA, Sack AT, Mathiak K (2013) Brain networks underlying mental imagery of auditory and visual information. Eur J Neurosci 37:1421–34

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bartolomeo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Spagna, A. & Bartolomeo, P. Hemispheric asymmetries in visual mental imagery. Brain Struct Funct 227, 697–708 (2022). https://doi.org/10.1007/s00429-021-02277-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02277-w

Keywords

Navigation