Abstract
Perineuronal nets (PNNs) surrounding fast-spiking, parvalbumin (PV) interneurons provide excitatory:inhibitory balance, which is impaired in several disorders associated with altered diurnal rhythms, yet few studies have examined diurnal rhythms of PNNs or PV cells. We measured the intensity and number of PV cells and PNNs labeled with Wisteria floribunda agglutinin (WFA) and also the oxidative stress marker 8-oxo-deoxyguanosine (8-oxo-dG) in rat prelimbic medial prefrontal cortex (mPFC) at Zeitgeber times (ZT) ZT0 (lights-on, inactive phase), ZT6 (mid-inactive phase), ZT12 (lights-off, active phase), and ZT18 (mid-active phase). Relative to ZT0, the intensities of PNN and PV labeling were increased in the dark (active) phase compared with the light (inactive) phase. The intensity of 8-oxo-dG was decreased from ZT0 at all times (ZT6,12,18). We also measured GAD 65/67 and vGLUT1 puncta apposed to PV cells with and without PNNs. There were more excitatory puncta on PV cells with PNNs at ZT18 vs. ZT6, but no changes in PV cells without PNNs and no changes in inhibitory puncta. Whole-cell slice recordings in fast-spiking (PV) cells with PNNs showed an increased ratio of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor:N-methyl-D-aspartate receptor (AMPA: NMDA) at ZT18 vs. ZT6. The number of PV cells and PV/PNN cells containing orthodenticle homeobox 2 (OTX2), which maintains PNNs, showed a strong trend toward an increase from ZT6 to ZT18. Diurnal fluctuations in PNNs and PV cells are expected to alter cortical excitatory:inhibitory balance and provide new insights into treatments for diseases impacted by disturbances in sleep and circadian rhythms.





Data availability
Data are available upon request from the corresponding author.
Code availability
Available for download at https://pipsqueak.ai.
References
Aalling NN, Nedergaard M, DiNuzzo M (2018) Cerebral metabolic changes during sleep. Curr Neurol Neurosci Rep 18(9):57. https://doi.org/10.1007/s11910-018-0868-9
Akgul G, McBain CJ (2016) Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. J Physiol 594(19):5471–5490. https://doi.org/10.1113/JP271764
Apulei J, Kim N, Testa D, Ribot J, Morizet D, Bernard C, Jourdren L, Blugeon C, Di Nardo AA, Prochiantz A (2019) Non-cell autonomous OTX2 homeoprotein regulates visual cortex plasticity through Gadd45b/g. Cereb Cortex 29(6):2384–2395. https://doi.org/10.1093/cercor/bhy108
Balmer TS (2016) Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons. eNeuro. https://doi.org/10.1523/ENEURO.0112-16.2016
Balmer TS, Carels VM, Frisch JL, Nick TA (2009) Modulation of perineuronal nets and parvalbumin with developmental song learning. J Neurosci 29(41):12878–12885
Bernard C, Prochiantz A (2016) Otx2-PNN interaction to regulate cortical plasticity. Neural Plast 2016:7931693. https://doi.org/10.1155/2016/7931693
Beurdeley M, Spatazza J, Lee HH, Sugiyama S, Bernard C, Di Nardo AA, Hensch TK, Prochiantz A (2012) Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32(27):9429–9437. https://doi.org/10.1523/JNEUROSCI.0394-12.2012
Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143. https://doi.org/10.1111/jsr.12371
Brown TE, Lee BR, Mu P, Ferguson D, Dietz D, Ohnishi YN, Lin Y, Suska A, Ishikawa M, Huang YH, Shen H, Kalivas PW, Sorg BA, Zukin RS, Nestler EJ, Dong Y, Schluter OM (2011) A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J Neurosci 31(22):8163–8174. https://doi.org/10.1523/JNEUROSCI.0016-11.2011
Bruckner G, Brauer K, Hartig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8(3):183–200. https://doi.org/10.1002/glia.440080306
Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929. https://doi.org/10.1126/science.1099745
Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, Do KQ (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA 110(22):9130–9135. https://doi.org/10.1073/pnas.1300454110
Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97(24):13372–13377. https://doi.org/10.1073/pnas.230362997
Campo GM, Avenoso A, Campo S, D’Ascola A, Ferlazzo AM, Calatroni A (2004) Reduction of DNA fragmentation and hydroxyl radical production by hyaluronic acid and chondroitin-4-sulphate in iron plus ascorbate-induced oxidative stress in fibroblast cultures. Free Radic Res 38(6):601–611. https://doi.org/10.1080/10715760410001694017
Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667. https://doi.org/10.1038/nature08002
Carmassi C, Palagini L, Caruso D, Masci I, Nobili L, Vita A, Dell’Osso L (2019) Systematic review of sleep disturbances and circadian sleep desynchronization in autism spectrum disorder: toward an integrative model of a self-reinforcing loop. Front Psychiatry 10:366. https://doi.org/10.3389/fpsyt.2019.00366
Carulli D, Foscarin S, Faralli A, Pajaj E, Rossi F (2013) Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Mol Cell Neurosci 57:10–22. https://doi.org/10.1016/j.mcn.2013.08.003
Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa SS, Glant TT, Fawcett JW (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(8):2331–2347
Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35(2):375–475. https://doi.org/10.1016/0306-4522(90)90091-h
Chakravorty S, Vandrey RG, He S, Stein MD (2018) Sleep management among patients with substance use disorders. Med Clin North Am 102(4):733–743. https://doi.org/10.1016/j.mcna.2018.02.012
Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D, Linden DJ, Sutula TP, McBain CJ, Worley PF (2010) Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13(9):1090–1097. https://doi.org/10.1038/nn.2621
Cho KK, Hoch R, Lee AT, Patel T, Rubenstein JL, Sohal VS (2015) Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice. Neuron 85(6):1332–1343. https://doi.org/10.1016/j.neuron.2015.02.019
Cohen SM, Ma H, Kuchibhotla KV, Watson BO, Buzsaki G, Froemke RC, Tsien RW (2016) Excitation-transcription coupling in parvalbumin-positive interneurons employs a novel CaM kinase-dependent pathway distinct from excitatory neurons. Neuron 90(2):292–307. https://doi.org/10.1016/j.neuron.2016.03.001
Cooper JM, Halter KA, Prosser RA (2018) Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 5:15–36. https://doi.org/10.1016/j.nbscr.2018.04.001
Di Nardo AA, Fuchs J, Joshi RL, Moya KL, Prochiantz A (2018) The physiology of homeoprotein transduction. Physiol Rev 98(4):1943–1982. https://doi.org/10.1152/physrev.00018.2017
Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549. https://doi.org/10.1146/annurev-physiol-021909-135821
Dingess PM, Darling RA, Derman RC, Wulff SS, Hunter ML, Ferrario CR, Brown TE (2017) Structural and functional plasticity within the nucleus accumbens and prefrontal cortex associated with time-dependent increases in food cue-seeking behavior. Neuropsychopharmacology 42(12):2354–2364. https://doi.org/10.1038/npp.2017.57
Dityatev A, Bruckner G, Dityateva G, Grosche J, Kleene R, Schachner M (2007) Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev Neurobiol 67(5):570–588. https://doi.org/10.1002/dneu.20361
Donato F, Rompani SB, Caroni P (2013) Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504(7479):272–276. https://doi.org/10.1038/nature12866
Du J, Zhang L, Weiser M, Rudy B, McBain CJ (1996) Developmental expression and functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus. J Neurosci 16(2):506–518
Eggermann E, Jonas P (2011) How the “slow” Ca(2+) buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci 15(1):20–22. https://doi.org/10.1038/nn.3002
Enwright JF, Sanapala S, Foglio A, Berry R, Fish KN, Lewis DA (2016) Reduced labeling of parvalbumin neurons and perineuronal nets in the dorsolateral prefrontal cortex of subjects with schizophrenia. Neuropsychopharmacology 41(9):2206–2214. https://doi.org/10.1038/npp.2016.24
Fanjul-Moles ML, Lopez-Riquelme GO (2016) Relationship between oxidative stress, circadian rhythms, and AMD. Oxid Med Cell Longev 2016:7420637. https://doi.org/10.1155/2016/7420637
Fawcett JW, Oohashi T, Pizzorusso T (2019) The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci 20(8):451–465. https://doi.org/10.1038/s41583-019-0196-3
Ferguson BR, Gao WJ (2018) PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits 12:37. https://doi.org/10.3389/fncir.2018.00037
Foscarin S, Raha-Chowdhury R, Fawcett JW, Kwok JCF (2017) Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory. Aging 9(6):1607–1622. https://doi.org/10.18632/aging.101256
Gabriel R, Lesauter J, Banvolgyi T, Petrovics G, Silver R, Witkovsky P (2004) AII amacrine neurons of the rat retina show diurnal and circadian rhythms of parvalbumin immunoreactivity. Cell Tissue Res 315(2):181–186. https://doi.org/10.1007/s00441-003-0785-2
Giamanco KA, Morawski M, Matthews RT (2010) Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170(4):1314–1327 (S0306-4522(10)01160-7 [pii])
Gogolla N, Caroni P, Luthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325(5945):1258–1261 (325/5945/1258 [pii])
Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6(4):348–357. https://doi.org/10.1176/jnp.6.4.348
Green CB, Durston AJ, Morgan R (2001) The circadian gene Clock is restricted to the anterior neural plate early in development and is regulated by the neural inducer noggin and the transcription factor Otx2. Mech Dev 101(1–2):105–110. https://doi.org/10.1016/s0925-4773(00)00559-1
Gronli J, Rempe MJ, Clegern WC, Schmidt M, Wisor JP (2016) Beta EEG reflects sensory processing in active wakefulness and homeostatic sleep drive in quiet wakefulness. J Sleep Res 25(3):257–268. https://doi.org/10.1111/jsr.12380
Gupta N, Ragsdale SW (2011) Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}. J Biol Chem 286(6):4392–4403. https://doi.org/10.1074/jbc.M110.193466
Harkness JH, Bushana PN, Todd RP, Clegern WC, Sorg BA, Wisor JP (2019) Sleep disruption elevates oxidative stress in parvalbumin-positive cells of the rat cerebral cortex. Sleep. https://doi.org/10.1093/sleep/zsy201
Hartig W, Brauer K, Bruckner G (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport 3(10):869–872
Hartig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Bruckner G (1999) Cortical neurons immunoreactive for the potassium channel Kv.31b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842(1):15–29 (S0006–8993(99)01784–9 [pii])
Hayashi Y, Koyanagi S, Kusunose N et al (2013) The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci Rep 3:2744. https://doi.org/10.1038/srep02744
Hegarty DM, Hermes SM, Largent-Milnes TM, Aicher SA (2014) Capsaicin-responsive corneal afferents do not contain TRPV1 at their central terminals in trigeminal nucleus caudalis in rats. J Chem Neuroanat 61–62:1–12. https://doi.org/10.1016/j.jchemneu.2014.06.006
Hegarty DM, Tonsfeldt K, Hermes SM, Helfand H, Aicher SA (2010) Differential localization of vesicular glutamate transporters and peptides in corneal afferents to trigeminal nucleus caudalis. J Comp Neurol 518(17):3557–3569. https://doi.org/10.1002/cne.22414
Hood S, Amir S (2017) The aging clock: circadian rhythms and later life. J Clin Invest 127(2):437–446. https://doi.org/10.1172/JCI90328
Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13(12):1369–1374. https://doi.org/10.1093/cercor/bhg084
Hrabetova S, Masri D, Tao L, Xiao F, Nicholson C (2009) Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC. J Physiol 587(Pt 16):4029–4049. https://doi.org/10.1113/jphysiol.2009.170092
Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119(7):1041–1054. https://doi.org/10.1016/j.cell.2004.10.032
Jorgensen ET, Gonzalez AE, Harkness JH, Hegarty DM, Thakar A, Burchi DJ, Aadland JA, Aicher SA, Sorg BA, Brown TE (2020) Cocaine memory reactivation induces functional adaptations within parvalbumin interneurons in the rat medial prefrontal cortex. Addict Biol. https://doi.org/10.1111/adb.12947
Kanabrocki EL, Murray D, Hermida RC, Scott GS, Bremner WF, Ryan MD, Ayala DE, Third JL, Shirazi P, Nemchausky BA, Hooper DC (2002) Circadian variation in oxidative stress markers in healthy and type II diabetic men. Chronobiol Int 19(2):423–439. https://doi.org/10.1081/cbi-120002914
Kann O, Papageorgiou IE, Draguhn A (2014) Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 34(8):1270–1282. https://doi.org/10.1038/jcbfm.2014.104
Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70(1):387–396. https://doi.org/10.1152/jn.1993.70.1.387
Kelly EA, Russo AS, Jackson CD, Lamantia CE, Majewska AK (2015) Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice. Front Cell Neurosci 9:369. https://doi.org/10.3389/fncel.2015.00369
Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, Dijk DJ, Eriksson SH (2018) Circadian rhythm and epilepsy. Lancet Neurol 17(12):1098–1108. https://doi.org/10.1016/S1474-4422(18)30335-1
Kind PC, Sengpiel F, Beaver CJ, Crocker-Buque A, Kelly GM, Matthews RT, Mitchell DE (2013) The development and activity-dependent expression of aggrecan in the cat visual cortex. Cereb Cortex 23(2):349–360. https://doi.org/10.1093/cercor/bhs015
Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM (2006) A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J Neurosci 26(5):1604–1615. https://doi.org/10.1523/JNEUROSCI.4722-05.2006
Kobayashi Y, Ye Z, Hensch TK (2015) Clock genes control cortical critical period timing. Neuron 86(1):264–275. https://doi.org/10.1016/j.neuron.2015.02.036
Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP (2012) Circadian Clock-associated 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA 109(42):17129–17134. https://doi.org/10.1073/pnas.1209148109
Lee HHC, Bernard C, Ye Z, Acampora D, Simeone A, Prochiantz A, Di Nardo AA, Hensch TK (2017) Genetic Otx2 mis-localization delays critical period plasticity across brain regions. Mol Psychiatry 22(5):785. https://doi.org/10.1038/mp.2017.83
Lewis DA (2014) Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol 26:22–26. https://doi.org/10.1016/j.conb.2013.11.003
Logan RW, Williams WP 3rd, McClung CA (2014) Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci 128(3):387–412. https://doi.org/10.1037/a0036268
Markoulli M, Papas E, Cole N, Holden BA (2012) The diurnal variation of matrix metalloproteinase-9 and its associated factors in human tears. Invest Ophthalmol Vis Sci 53(3):1479–1484. https://doi.org/10.1167/iovs.11-8365
McRae PA, Rocco MM, Kelly G, Brumberg JC, Matthews RT (2007) Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. J Neurosci 27(20):5405–5413. https://doi.org/10.1523/JNEUROSCI.5425-06.2007
Miyata S, Kitagawa H (2016) Chondroitin sulfate and neuronal disorders. Front Biosci 21:1330–1340
Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H (2012) Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15(3):414–422. https://doi.org/10.1038/nn.3023
Morawski M, Reinert T, Meyer-Klaucke W, Wagner FE, Troger W, Reinert A, Jager C, Bruckner G, Arendt T (2015) Ion exchanger in the brain: quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties. Sci Rep 5:16471. https://doi.org/10.1038/srep16471
Murase S, Lantz CL, Quinlan EM (2017) Light reintroduction after dark exposure reactivates plasticity in adults via perisynaptic activation of MMP-9. Elife. https://doi.org/10.7554/eLife.27345
Packer AM, Yuste R (2011) Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci 31(37):13260–13271. https://doi.org/10.1523/JNEUROSCI.3131-11.2011
Pantazopoulos H, Berretta S (2016) In sickness and in health: perineuronal nets and synaptic plasticity in psychiatric disorders. Neural Plast 2016:9847696. https://doi.org/10.1155/2016/9847696
Pantazopoulos H, Gisabella B, Rexrode L, Benefield D, Yildiz E, Seltzer P, Valeri J, Chelini G, Reich A, Ardelt M, Berretta S (2020) Circadian rhythms of perineuronal net composition. eNeurology. https://doi.org/10.1523/ENEURO.0034-19.2020
Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S (2017) Decreased numbers of somatostatin-expressing neurons in the amygdala of subjects with bipolar disorder or schizophrenia: relationship to circadian rhythms. Biol Psychiatry 81(6):536–547. https://doi.org/10.1016/j.biopsych.2016.04.006
Paxinos GWC (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New York
Pelkey KA, Barksdale E, Craig MT, Yuan X, Sukumaran M, Vargish GA, Mitchell RM, Wyeth MS, Petralia RS, Chittajallu R, Karlsson RM, Cameron HA, Murata Y, Colonnese MT, Worley PF, McBain CJ (2015) Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 85(6):1257–1272. https://doi.org/10.1016/j.neuron.2015.02.020
Perreau-Lenz S, Spanagel R (2015) Clock genes x stress x reward interactions in alcohol and substance use disorders. Alcohol 49(4):351–357. https://doi.org/10.1016/j.alcohol.2015.04.003
Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248–1251
Ramanathan L, Hu S, Frautschy SA, Siegel JM (2010) Short-term total sleep deprivation in the rat increases antioxidant responses in multiple brain regions without impairing spontaneous alternation behavior. Behav Brain Res 207(2):305–309. https://doi.org/10.1016/j.bbr.2009.10.014
Rankin-Gee EK, McRae PA, Baranov E, Rogers S, Wandrey L, Porter BE (2015) Perineuronal net degradation in epilepsy. Epilepsia 56(7):1124–1133. https://doi.org/10.1111/epi.13026
Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766. https://doi.org/10.1152/physrev.00032.2012
Rohde K, Rovsing L, Ho AK, Moller M, Rath MF (2014) Circadian dynamics of the cone-rod homeobox (CRX) transcription factor in the rat pineal gland and its role in regulation of arylalkylamine N-acetyltransferase (AANAT). Endocrinology 155(8):2966–2975. https://doi.org/10.1210/en.2014-1232
Sakai A, Nakato R, Ling Y, Hou X, Hara N, Iijima T, Yanagawa Y, Kuwano R, Okuda S, Shirahige K, Sugiyama S (2017) Genome-wide target analyses of Otx2 homeoprotein in postnatal cortex. Front Neurosci 11:307. https://doi.org/10.3389/fnins.2017.00307
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, Frank S, Brown SA, Eckert A (2018) Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab 27(3):657–666. https://doi.org/10.1016/j.cmet.2018.01.011
Seeger G, Brauer K, Hartig W, Bruckner G (1994) Mapping of perineuronal nets in the rat brain stained by colloidal iron hydroxide histochemistry and lectin cytochemistry. Neuroscience 58(2):371–388
Seibt J, Frank MG (2019) Primed to sleep: the dynamics of synaptic plasticity across brain states. Front Syst Neurosci 13:2. https://doi.org/10.3389/fnsys.2019.00002
Seney ML, Cahill K, Enwright JF 3rd, Logan RW, Huo Z, Zong W, Tseng G, McClung CA (2019) Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia. Nat Commun 10(1):3355. https://doi.org/10.1038/s41467-019-11335-1
Silva RH, Abilio VC, Takatsu AL, Kameda SR, Grassl C, Chehin AB, Medrano WA, Calzavara MB, Registro S, Andersen ML, Machado RB, Carvalho RC, Ribeiro Rde A, Tufik S, Frussa-Filho R (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46(6):895–903. https://doi.org/10.1016/j.neuropharm.2003.11.032
Slaker M, Barnes J, Sorg BA, Grimm JW (2016a) Impact of environmental enrichment on perineuronal nets in the prefrontal cortex following early and late abstinence from sucrose self-administration in rats. PLoS ONE 11(12):e0168256. https://doi.org/10.1371/journal.pone.0168256
Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, Darling RA, Brown TE, Sorg BA (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 35(10):4190–4202. https://doi.org/10.1523/JNEUROSCI.3592-14.2015
Slaker M, Harkness J, Sorg BA (2016b) A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. IBRO Reports 1:54–60
Slaker ML, Harkness JH, Sorg BA (2016c) A standardized and automated method of perineuronal net analysis using Wisteria floribunda agglutinin staining intensity. IBRO Rep 1:54–60. https://doi.org/10.1016/j.ibror.2016.10.001
Slaker ML, Jorgensen ET, Hegarty DM, Liu X, Kong Y, Zhang F, Linhardt RJ, Brown TE, Aicher SA, Sorg BA (2018) Cocaine exposure modulates perineuronal nets and synaptic excitability of fast-spiking interneurons in the medial prefrontal cortex. eNeuro. https://doi.org/10.1523/ENEURO.0221-18.2018
Snider KH, Sullivan KA, Obrietan K (2018) Circadian Regulation of hippocampal-dependent memory: circuits, synapses, and molecular mechanisms. Neural Plast 2018:7292540. https://doi.org/10.1155/2018/7292540
Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702 (nature07991[pii])
Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JC, Miquel M (2016) Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci 36(45):11459–11468. https://doi.org/10.1523/JNEUROSCI.2351-16.2016
Spatazza J, Lee HH, Di Nardo AA, Tibaldi L, Joliot A, Hensch TK, Prochiantz A (2013) Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell reports 3(6):1815–1823. https://doi.org/10.1016/j.celrep.2013.05.014
Steullet P, Cabungcal JH, Coyle J, Didriksen M, Gill K, Grace AA, Hensch TK, LaMantia AS, Lindemann L, Maynard TM, Meyer U, Morishita H, O’Donnell P, Puhl M, Cuenod M, Do KQ (2017) Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol Psychiatry 22(7):936–943. https://doi.org/10.1038/mp.2017.47
Sugiyama S, Di Nardo AA, Aizawa S, Matsuo I, Volovitch M, Prochiantz A, Hensch TK (2008) Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134(3):508–520 (S0092-8674(08)00839-8[pii])
Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17(1):58–69
Taishi P, Sanchez C, Wang Y, Fang J, Harding JW, Krueger JM (2001) Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Physiol Regul Integr Comp Physiol 281(3):R839-845. https://doi.org/10.1152/ajpregu.2001.281.3.R839
Tayebjee MH, Lip GY, Blann AD, Macfadyen RJ (2005) Effects of age, gender, ethnicity, diurnal variation and exercise on circulating levels of matrix metalloproteinases (MMP)-2 and -9, and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMP)-1 and -2. Thromb Res 115(3):205–210. https://doi.org/10.1016/j.thromres.2004.08.023
Testa D, Prochiantz A, Di Nardo AA (2019) Perineuronal nets in brain physiology and disease. Semin Cell Dev Biol 89:125–135. https://doi.org/10.1016/j.semcdb.2018.09.011
Tewari BP, Chaunsali L, Campbell SL, Patel DC, Goode AE, Sontheimer H (2018) Perineuronal nets decrease membrane capacitance of peritumoral fast spiking interneurons in a model of epilepsy. Nat Commun 9(1):4724. https://doi.org/10.1038/s41467-018-07113-0
Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62(2):143–150. https://doi.org/10.1016/j.brainresbull.2003.09.004
Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025
Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113. https://doi.org/10.1038/nrn2774
Van’t Spijker HM, Rowlands D, Rossier J, Haenzi B, Fawcett JW, Kwok JCF (2019) Neuronal pentraxin 2 binds PNNs and enhances PNN formation. Neural Plast 2019:6804575. https://doi.org/10.1155/2019/6804575
Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11(2):200–208. https://doi.org/10.1038/nn2035
Wegner F, Hartig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, Bruckner G (2003) Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 184(2):705–714. https://doi.org/10.1016/S0014-4886(03)00313-3
Wen TH, Binder DK, Ethell IM, Razak KA (2018) The Perineuronal “safety” net? perineuronal net abnormalities in neurological disorders. Front Mol Neurosci 11:270. https://doi.org/10.3389/fnmol.2018.00270
Wilking M, Ndiaye M, Mukhtar H, Ahmad N (2013) Circadian rhythm connections to oxidative stress: implications for human health. Antioxid Redox Signal 19(2):192–208. https://doi.org/10.1089/ars.2012.4889
Wisor JP (2011) A metabolic-transcriptional network links sleep and cellular energetics in the brain. Pflugers Arch. https://doi.org/10.1007/s00424-011-1030-6
Wulff K, Joyce E (2011) Circadian rhythms and cognition in schizophrenia. Br J Psychiatry 198(4):250–252. https://doi.org/10.1192/bjp.bp.110.085068
Zhang Z, Sun QQ (2011) Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev Neurobiol 71(3):221–245. https://doi.org/10.1002/dneu.20844
Acknowledgements
The authors would like to thank Dr. Megan Slaker, Ryan P. Todd, Monica Chang, and Nathan Allen for help with earlier stages of the experiments and Jonathan Ramos for assistance with analysis.
Funding
This work was funded by Washington State University Alcohol and Drug Abuse Research Program, NIH GM134789 (JHH); NIH DA033404 (BAS), DA040965 (BAS, TEB, SAA); NIH NS078498 (JPW); NIH P30 NS061800 (SAA); and Agence Nationale de la Recherche ANR-18-CE16-0013–01 (AP and AAD).
Author information
Authors and Affiliations
Contributions
JHH, AEE, ETJ, and DH conducted experiments and analyzed data; PNB analyzed data; JPW performed statistical analyses and contributed to writing the manuscript; AD and AP contributed to writing the manuscript; and SAA, TEB, and BAS contributed to writing the manuscript, and designed and directed the experiments.
Corresponding author
Ethics declarations
Conflicts of interest
JHH and BAS are listed as inventors of the Washington State University analysis program, Pipsqueak™. JHH is a majority stake holder in Rewire Neuro, Inc., the licensing partner of the Pipsqueak™ technology. The authors do not perceive these relationships to have had an influence on this report.
Ethical approval
All procedures were performed in accordance with the National Institutes of Health's Guidelines for the Care and Use of Laboratory Animals and with approval from the Institutional Animal Care and Use Committee at Legacy Research Institute and Washington State University.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Harkness, J.H., Gonzalez, A.E., Bushana, P.N. et al. Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Brain Struct Funct 226, 1135–1153 (2021). https://doi.org/10.1007/s00429-021-02229-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00429-021-02229-4