Investigating the effects of healthy cognitive aging on brain functional connectivity using 4.7 T resting-state functional magnetic resonance imaging

Abstract

Functional changes in the aging human brain have been previously reported using functional magnetic resonance imaging (fMRI). Earlier resting-state fMRI studies revealed an age-associated weakening of intra-system functional connectivity (FC) and age-associated strengthening of inter-system FC. However, the majority of such FC studies did not investigate the relationship between age and network amplitude, without which correlation-based measures of FC can be challenging to interpret. Consequently, the main aim of this study was to investigate how three primary measures of resting-state fMRI signal—network amplitude, network topography, and inter-network FC—are affected by healthy cognitive aging. We acquired resting-state fMRI data on a 4.7 T scanner for 105 healthy participants representing the entire adult lifespan (18–85 years of age). To study age differences in network structure, we combined ICA-based network decomposition with sparse graphical models. Older adults displayed lower blood-oxygen-level-dependent (BOLD) signal amplitude in all functional systems, with sensorimotor networks showing the largest age differences. Our age comparisons of network topography and inter-network FC demonstrated a substantial amount of age invariance in the brain’s functional architecture. Despite architecture similarities, old adults displayed a loss of communication efficiency in our inter-network FC comparisons, driven primarily by the FC reduction in frontal and parietal association cortices. Together, our results provide a comprehensive overview of age effects on fMRI-based FC.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

For confidentiality reasons, imaging data are not publicly available.

Code availability

Most of the analyses were conducted using freely available imaging software. We are willing to share some of our in-house analysis scripts upon request.

References

  1. Aanerud J, Borghammer P, Chakravarty MM, Vang K, Rodell AB, Jónsdottir KY, Møller A, Ashkanian M, Vafaee MS, Iversen P, Johannsen P, Gjedde A (2012) Brain energy metabolism and blood flow differences in healthy aging. J Cereb Blood Flow Metab 32:1177–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aghamohammadi-Sereshki A, Hrybouski S, Travis S, Huang Y, Olsen F, Carter R, Camicioli R, Malykhin NV (2019) Amygdala subnuclei and healthy cognitive aging. Hum Brain Mapp 40:34–52

    PubMed  Google Scholar 

  3. Allen EA, Erhardt EB, Eichele T, Mayer AR, Calhoun VD (2010) “Comparison of pre-normalization methods on the accuracy of group ICA results”, in 16th Annual Meeting of the Organization for Human Brain Mapping, 6–10 June, Barcelona, Spain

  4. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2

    PubMed  PubMed Central  Google Scholar 

  5. Allen EA, Erhardt EB, Wei Y, Eichele T, Calhoun VD (2012) Capturing inter- subject variability with group independent component analysis of fMRI data: a simulation study. NeuroImage 59:4141–4159

    PubMed  Google Scholar 

  6. Ambler G, Royston P (2001) Fractional polynomial model selection procedures: investigation of type I error rate. J Stat Comput Simul 69:89–108

    Google Scholar 

  7. Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, Buxton RB (2009) Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp 30:1120–1132

    PubMed  Google Scholar 

  8. Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. NeuroImage 13:903–919

    CAS  PubMed  Google Scholar 

  9. Andrews-Hanna JR (2012) The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18:251–270

    PubMed  Google Scholar 

  10. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Arbabshirani MR, Damaraju E, Phlypo R, Plis S, Allen E, Ma S, Mathalon D, Preda A, Vaidya JG, Adali T, Calhoun VD (2014) Impact of autocorrelation on functional connectivity. NeuroImage 102(Pt 2):294–308

    PubMed  PubMed Central  Google Scholar 

  12. Avants B, Gee JC (2004) Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage 23(Suppl 1):S139–S150

    PubMed  Google Scholar 

  13. Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12:26–41

    CAS  PubMed  Google Scholar 

  14. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third International AAAI Conference on Weblogs and Social Media, pp. 361e362. http://aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  15. Beason-Held LL, Kraut MA, Resnick SM (2008) I. Longitudinal changes in aging brain function. Neurobiol Aging 29:483–496

    CAS  PubMed  Google Scholar 

  16. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23:137–152

    PubMed  Google Scholar 

  17. Bell AJ, Sejnowski T (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    CAS  PubMed  Google Scholar 

  18. Bertsch K, Hagemann D, Hermes M, Walter C, Khan R, Naumann E (2009) Resting cerebral blood flow, attention, and aging. Brain Res 1267:77–88

    CAS  PubMed  Google Scholar 

  19. Betzel RF, Byrge L, He Y, Goñi J, Zuo X-N, Sporns O (2014) Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage 102(Pt 2):345–357

    PubMed  Google Scholar 

  20. Biagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702

    PubMed  Google Scholar 

  21. Birkes D, Dodge Y (1993) Alternative methods of regression. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  22. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31(4):1536–1548

    PubMed  Google Scholar 

  23. Birn RM, Murphy K, Bandettini PA (2008) The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp 29(7):740–750

    PubMed  PubMed Central  Google Scholar 

  24. Brown TA, Di Nardo PA, Lehman CL, Campbell LA (2001) Reliability of DSM-IV anxiety and mood disorders: implications for the classification of emotional disorders. J Abnorm Psychol 110:49–58

    CAS  PubMed  Google Scholar 

  25. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44:195–208

    CAS  PubMed  Google Scholar 

  26. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC (2000) Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12(Suppl 2):24–34

    PubMed  Google Scholar 

  27. Buckner RL, Krienen FM, Yeo BTT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16:832–837

    PubMed  Google Scholar 

  28. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    CAS  PubMed  Google Scholar 

  29. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  30. Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17:1394–1402

    PubMed  Google Scholar 

  31. Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task- independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14:364–375

    PubMed  Google Scholar 

  32. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao M, Wang J-H, Dai Z-J, Cao X-Y, Jiang L-L, Fan F-M, Song X-W, Xia M-R, Shu N, Dong Q, Milham MP, Castellanos FX, Zuo X-N, He Y (2014) Topological organization of the human brain functional connectome across the lifespan. Dev Cogn Neurosci 7:76–93

    PubMed  Google Scholar 

  34. Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS (2014) Decreased segregation of brain systems across the healthy adult lifespan. Proc Natl Acad Sci USA 111:E4997–E5006

    CAS  PubMed  Google Scholar 

  35. Chan MY, Alhazmi FH, Park DC, Savalia NK, Wig GS (2017) Resting-state network topology differentiates task signals across the adult life span. J Neurosci 37:2734–2745

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang C, Cunningham JP, Glover GH (2009) Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage 44(3):857–869

    PubMed  Google Scholar 

  37. Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage 55:468–478

    PubMed  Google Scholar 

  38. Chong JSX, Ng KK, Tandi J, Wang C, Poh J-H, Lo JC, Chee MWL, Zhou JH (2019) Longitudinal changes in the cerebral cortex functional organization of healthy elderly. J Neurosci 39:5534–5550

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Christoff K, Irving ZC, Fox KCR, Spreng RN, Andrews-Hanna JR (2016) Mind- wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718–731

    CAS  PubMed  Google Scholar 

  40. Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, Shinohara RT, Elliott MA, Eickhoff SB, Davatzikos C, Gur RC, Gur RE, Bassett DS, Satterthwaite TD (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154:174–187

    PubMed  PubMed Central  Google Scholar 

  41. Cohen ER, Rostrup E, Sidaros K, Lund TE, Paulson OB, Ugurbil K, Kim S-G (2004) Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences. NeuroImage 23:613–624

    PubMed  Google Scholar 

  42. Costantini G, Epskamp S, Borsboom D, Perugini M, Mõttus R, Waldorp LJ, Cramer AOJ (2015) State of the aRt personality research: A tutorial on network analysis of personality data in R. J Res Pers 54:13–29

    Google Scholar 

  43. Craddock RC, Jbabdi S, Yan C-G, Vogelstein JT, Castellanos FX, Di Martino A, Kelly C, Heberlein K, Colcombe S, Milham MP (2013) Imaging human connectomes at the macroscale. Nat Methods 10:524–539

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Crossley NA, Mechelli A, Vértes PE, Winton-Brown TT, Patel AX, Ginestet CE, McGuire P, Bullmore ET (2013) Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:11583–11588

    CAS  PubMed  Google Scholar 

  45. D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage 10:6–14

    PubMed  Google Scholar 

  46. D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    PubMed  Google Scholar 

  47. Damoiseaux JS (2017) Effects of aging on functional and structural brain connectivity. NeuroImage 160:32–40

    PubMed  Google Scholar 

  48. Damoiseaux JS, Beckmann CF, Arigita EJS, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SARB (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18:1856–1864

    CAS  PubMed  Google Scholar 

  49. Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18:1201–1209

    PubMed  Google Scholar 

  50. Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neuroscientist 17:107–123

    PubMed  Google Scholar 

  51. Di Nardo PA, Brown TA, Barlow DH (1994) Anxiety Disorders interview schedule for DSM-IV—Lifetime Version (ADIS-IV-L). Psychological Corporation, San Antonio

    Google Scholar 

  52. Dielman TE (2005) Least absolute value regression: recent contributions. J Stat Comput Simul 75:263–286

    Google Scholar 

  53. Drton M, Perlman MD (2004) Model selection for Gaussian concentration graphs. Biometrika 91:591–602

    Google Scholar 

  54. Du Y, Fan Y (2013) Group information guided ICA for fMRI data analysis. NeuroImage 69:157–197

    PubMed  Google Scholar 

  55. Du Y, Allen EA, He H, Sui J, Wu L, Calhoun VD (2016) Artifact removal in the context of group ICA: a comparison of single-subject and group approaches. Hum Brain Mapp 37:1005–1025

    PubMed  Google Scholar 

  56. Du Y, Lin D, Yu Q, Sui J, Chen J, Rachakonda S, Adali T, Calhoun VD (2017) Comparison of IVA and GIG-ICA in brain functional network estimation using fMRI data. Front Neurosci 11:267

    PubMed  PubMed Central  Google Scholar 

  57. Duff EP, Makin T, Cottaar M, Smith SM, Woolrich MW (2018) Disambiguating brain functional connectivity. NeuroImage 173:540–550

    PubMed  PubMed Central  Google Scholar 

  58. Epskamp S, Fried EI (2018) A tutorial on regularized partial correlation networks. Psychol Methods 23:617–634

    PubMed  Google Scholar 

  59. Fabiani M (2012) It was the best of times, it was the worst of times: a psychophysiologist’s view of cognitive aging. Psychophysiology 49:283–304

    PubMed  Google Scholar 

  60. Fabiani M, Gordon BA, Maclin EL, Pearson MA, Brumback-Peltz CR, Low KA, McAuley E, Sutton BP, Kramer AF, Gratton G (2014) Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. NeuroImage 85(Pt 1):592–607

    PubMed  Google Scholar 

  61. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96:1348–1360

    Google Scholar 

  62. Farkas E, Luiten PGM (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611

    CAS  PubMed  Google Scholar 

  63. Fera F, Weickert TW, Goldberg TE, Tessitore A, Hariri A, Das S, Lee S, Zoltick B, Meeter M, Myers CE, Gluck MA, Weinberger DR, Mattay VS (2005) Neural mechanisms underlying probabilistic category learning in normal aging. J Neurosci 25:11340–11348

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009a) One-year brain atrophy evident in healthy aging. J Neurosci 29:15223–15231

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009b) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex 19:2001–2012

    PubMed  PubMed Central  Google Scholar 

  66. Fjell AM, Walhovd KB, Westlye LT, Østby Y, Tamnes CK, Jernigan TL, Tamnes CK, Jernigan TL, Gamst A, Dale AM (2010) When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. NeuroImage 50(4):1376–1383

    PubMed  Google Scholar 

  67. Fjell AM, Sneve MH, Grydeland H, Storsve AB, de Lange A-MG, Amlien IK, Røgeberg OJ, Walhovd KB (2015) Functional connectivity change across multiple cortical networks relates to episodic memory changes in aging. Neurobiol Aging 36:3255–3268

    PubMed  Google Scholar 

  68. Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4(6):727–736

    CAS  PubMed  Google Scholar 

  69. Freedman D, Lane D (1983) A nonstochastic interpretation of reported significance levels. J Business Econ Statistics 1:292

    Google Scholar 

  70. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441

    PubMed  Google Scholar 

  71. Gagnon L, Sakadžic S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, Yücel MA, Evans KC, Mandeville ET, Cohen-Adad J, Polimeni JR, Yaseen MA, Lo EH, Greve DN, Buxton RB, Dale AM, Devor A, Boas DA (2015) Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J Neurosci 35:3663–3675

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Galiano A, Mengual E, García de Eulate R, Galdeano I, Vidorreta M, Recio M, Riverol M, Zubieta JL, Fernández-Seara MA (2019) Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav. https://doi.org/10.1007/s11682-019-00157-w

    Article  Google Scholar 

  73. Galvin JE, Roe CM, Coats MA, Morris JC (2007) Patient’s rating of cognitive ability: using the AD8, a brief informant interview, as a self-rating tool to detect dementia. Arch Neurol 64:725–730

    PubMed  Google Scholar 

  74. Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM (2015) A brain-wide study of age-related changes in functional connectivity. Cereb Cortex 25:1987–1999

    PubMed  Google Scholar 

  75. Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167

    CAS  PubMed  Google Scholar 

  76. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14(Pt 1):21–36

    CAS  PubMed  Google Scholar 

  77. Gordon EM, Laumann TO, Adeyemo B, Petersen SE (2017) Individual variability of the system-level organization of the human brain. Cereb Cortex 27:386–399

    PubMed  Google Scholar 

  78. Grady CL (2008) Cognitive neuroscience of aging. Ann N Y Acad Sci 1124:127–144

    PubMed  Google Scholar 

  79. Grady CL (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13:491–505

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis MJ, Salerno JA, Pietrini P, Wagner E, Haxby JV (1994) Age-related changes in cortical blood flow activation during visual processing of faces and location. J Neurosci 14(Pt 2):1450–1462

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G (2006) Age- related changes in brain activity across the adult lifespan. J Cogn Neurosci 18:227–241

    PubMed  Google Scholar 

  82. Grady CL, Sarraf S, Saverino C, Campbell K (2016) Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol Aging 41:159–172

    PubMed  Google Scholar 

  83. Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary- based registration. NeuroImage 48:63–72

    PubMed  PubMed Central  Google Scholar 

  84. Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N, Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K, Miller KL, Smith SM (2014) ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95(C5):232–247

    PubMed  PubMed Central  Google Scholar 

  85. Griffanti L, Douaud G, Bijsterbosch J, Evangelisti S, Alfaro-Almagro F, Glasser MF, Fuff EP, Fitzgibbon S, Westphal R, Carone D, Beckmann CF, Smith SM (2017) Hand classification of fMRI ICA noise components. NeuroImage 154:188–205

    PubMed  PubMed Central  Google Scholar 

  86. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    PubMed  Google Scholar 

  87. Gutchess AH, Welsh RC, Hedden T, Bangert A, Minear M, Liu LL, Park DC (2005) Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci 17:84–96

    PubMed  Google Scholar 

  88. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, Russel RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637

    CAS  PubMed  Google Scholar 

  89. Hampson M, Tokoglu F, Shen X, Scheinost D, Papademetris X, Constable RT (2012) Intrinsic brain connectivity related to age in young and middle aged adults. PLoS ONE 7:e44067

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Han L, Savalia NK, Chan MY, Agres PF, Nair AS, Wig GS (2018) Functional parcellation of the cerebral cortex across the human adult lifespan. Cereb Cortex 28:4403–4423

    PubMed  PubMed Central  Google Scholar 

  91. Handwerker DA, Gazzaley A, Inglis BA, D’Esposito M (2007) Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum Brain Mapp 28:846–859

    PubMed  Google Scholar 

  92. Hedden T, Gabrieli JDE (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5:87–96

    CAS  PubMed  Google Scholar 

  93. Hesselmann V, Zaro Weber O, Wedekind C, Krings T, Schulte O, Kugel H, Krug B, Klug N, Lackner KJ (2001) Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308:141–144

    CAS  PubMed  Google Scholar 

  94. Hillman EMC (2014) Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev Neurosci 37:161–181

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22:1214–1222

    PubMed  Google Scholar 

  96. Hirsiger S, Koppelmans V, Mérillat S, Liem F, Erdeniz B, Seidler RD, Jäncke L (2016) Structural and functional connectivity in healthy aging: associations for cognition and motor behavior. Hum Brain Mapp 37:855–867

    PubMed  Google Scholar 

  97. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    Google Scholar 

  98. Houx PJ, Jolles J (1993) Age-related decline of psychomotor speed: effects of age, brain health, sex, and education. Percept Mot Skills 76:195–211

    CAS  PubMed  Google Scholar 

  99. Huang C-C, Hsieh W-J, Lee P-L, Peng L-N, Liu L-K, Lee W-J, Huang J-K, Chen L-K, Lin C-P (2015) Age-related changes in resting-state networks of a large sample size of healthy elderly. CNS Neurosci Ther 21:817–825

    PubMed  PubMed Central  Google Scholar 

  100. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    CAS  PubMed  Google Scholar 

  101. Hutchinson S, Kobayashi M, Horkan CM, Pascual-Leone A, Alexander MP, Schlaug G (2002) Age-related differences in movement representation. NeuroImage 17:1720–1728

    CAS  PubMed  Google Scholar 

  102. Hutchison JL, Lu H, Rypma B (2013) Neural mechanisms of age-related slowing: the ΔCBF/ΔCMRO2 ratio mediates age-differences in BOLD signal and human performance. Cereb Cortex 23:2337–2346

    PubMed  Google Scholar 

  103. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841

    PubMed  Google Scholar 

  104. Kannurpatti SS, Motes MA, Rypma B, Biswal BB (2011) Increasing measurement accuracy of age-related BOLD signal change: minimizing vascular contributions by resting- state-fluctuation-of-amplitude scaling. Hum Brain Mapp 32:1125–1140

    PubMed  Google Scholar 

  105. Kauranen K, Vanharanta H (1996) Influences of aging, gender, and handedness on motor performance of upper and lower extremities. Percept Mot Skills 82:515–525

    CAS  PubMed  Google Scholar 

  106. Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JDE, Whitfield- Gabrieli S (2015) Resting-state anticorrelations between medial and lateral prefrontal cortex: association with working memory, aging, and individual differences. Cortex 64:271–280

    PubMed  Google Scholar 

  107. Kety SS (1956) Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis 3:478–486

    CAS  PubMed  Google Scholar 

  108. Kim S-G (2018) Biophysics of BOLD fMRI investigated with animal models. J Magn Reson 292:82–89

    CAS  PubMed  Google Scholar 

  109. Kim SG, Ogawa S (2012) Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 32:1188–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim J-H, Lee Y-S, Lee J-J, Song H-J, Yoo D-S, Lee HJ, Kim H-J, Chang Y (2010) Functional magnetic resonance imaging reveals age-related alterations to motor networks in weighted elbow flexion-extension movement. Neurol Res 32:995–1001

    PubMed  Google Scholar 

  111. Koch W, Teipel S, Mueller S, Buerger K, Bokde ALW, Hampel H, Coates U, Reiser M, Meindl T (2010) Effects of aging on default mode network activity in resting state fMRI: does the method of analysis matter? NeuroImage 51:280–287

    CAS  PubMed  Google Scholar 

  112. Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen M-Y, Gilmore AW, McDermott KB, Nelson SM, Dosenbach NUF, Schlaggar BL, Mumford JA, Poldrack RA, Petersen SE (2015) Functional system and areal organization of a highly sampled individual human brain. Neuron 87:657–670

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lawrence KD, Shier DR (1981) A comparison of least squares and least absolute deviation regression models for estimating Weibull parameters. Commun Stat Simulation Computa 10:315–326

    Google Scholar 

  114. Leong RLF, Lo JC, Sim SKY, Zheng H, Tandi J, Zhou J, Chee MWL (2017) Longitudinal brain structure and cognitive changes over 8 years in an East Asian cohort. NeuroImage 147:852–860

    PubMed  Google Scholar 

  115. Levine BK, Beason-Held LL, Purpura KP, Aronchick DM, Optican LM, Alexander GE, Horwitz B, Rapoport SI, Schapiro MB (2000) Age-related differences in visual perception: a PET study. Neurobiol Aging 21:577–584

    CAS  PubMed  Google Scholar 

  116. Li H-J, Hou X-H, Liu H-H, Yue C-L, Lu G-M, Zuo X-N (2015) Putting age-related task activation into large-scale brain networks: a meta-analysis of 114 fMRI studies on healthy aging. Neurosci Biobehav Rev 57:156–174

    PubMed  Google Scholar 

  117. Liao X, Cao M, Xia M, He Y (2017) Individual differences and time-varying features of modular brain architecture. NeuroImage 152:94–107

    PubMed  Google Scholar 

  118. Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Section J, Park DC, Lu H (2013) Age-related differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. NeuroImage 78:415–425

    PubMed  PubMed Central  Google Scholar 

  119. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under- recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33:827–840

    CAS  PubMed  Google Scholar 

  120. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    CAS  PubMed  Google Scholar 

  121. Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, Hebrank AC, Uh J, Park DC (2011) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex 21:1426–1434

    PubMed  Google Scholar 

  122. Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, Morris JC, Buckner RL (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci 100:14504–14509

    CAS  PubMed  Google Scholar 

  123. Madan CR (2018) Age differences in head motion and estimates of cortical morphology. PeerJ 6:e5176

    PubMed  PubMed Central  Google Scholar 

  124. Madden DJ, Turkington TG, Coleman RE, Provenzale JM, DeGrado TR, Hoffman JM (1996) Adult age differences in regional cerebral blood flow during visual world identification: evidence from H215O PET. NeuroImage 3:127–142

    CAS  PubMed  Google Scholar 

  125. Malykhin NV, Huang Y, Hrybouski S, Olsen F (2017) Differential vulnerability of hippocampal subfields and anteroposterior hippocampal subregions in healthy cognitive aging. Neurobiol Aging 59:121–134

    PubMed  Google Scholar 

  126. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58:630–635

    CAS  PubMed  Google Scholar 

  127. McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler DJ, Holland D, Koyama A, Brewer JB, Dale AM (2009) Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73:457–465

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mehagnoul-Schipper DJ, van der Kallen BFW, Colier WNJM, van der Sluijs MC, van Erning LJTO, Thijssen HOM, Oeseburg B, Hoefnagels WHL, Jansen RWMM (2002) Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp 16:14–23

    PubMed  PubMed Central  Google Scholar 

  129. Meier TB, Desphande AS, Vergun S, Nair VA, Song J, Biswal BB, Meyerand ME, Birn RM, Prabhakaran V (2012) Support vector machine classification and characterization of age-related reorganization of functional brain networks. NeuroImage 60:601–613

    PubMed  Google Scholar 

  130. Melamed E, Lavy S, Bentin S, Cooper G, Rinot Y (1980) Reduction in regional cerebral blood flow during normal aging in man. Stroke 11:31–35

    CAS  PubMed  Google Scholar 

  131. Meunier D, Achard S, Morcom A, Bullmore E (2009) Age-related changes in modular organization of human brain functional networks. NeuroImage 44:715–723

    PubMed  Google Scholar 

  132. Miller SL, Celone K, DePeau K, Diamond E, Dickerson BC, Rentz D, Pihlajamäki M, Sperling RA (2008) Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proc Natl Acad Sci USA 105:2181–2186

    CAS  PubMed  Google Scholar 

  133. Mitra P, Bokil H (2008) Observed brain dynamics. Oxford University Press, New York

    Google Scholar 

  134. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mowinckel AM, Espeseth T, Westlye LT (2012) Network-specific effects of age and in- scanner subject motion: a resting-state fMRI study of 238 healthy adults. NeuroImage 63:1364–1373

    PubMed  Google Scholar 

  136. Mueller S, Wang D, Fox MD, Yeo BTT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77:586–595

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53:695–699

    PubMed  Google Scholar 

  138. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  139. Ng KK, Lo JC, Lim JKW, Chee MWL, Zhou J (2016) Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study. NeuroImage 133:321–330

    PubMed  Google Scholar 

  140. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    CAS  Google Scholar 

  141. Onoda K, Yamaguchi S (2013) Small-worldness and modularity of the resting-state functional brain network decrease with aging. Neurosci Lett 556:104–108

    CAS  PubMed  Google Scholar 

  142. Onoda K, Ishihara M, Yamaguchi S (2012) Decreased functional connectivity by aging is associated with cognitive decline. J Cogn Neurosci 24:2186–2198

    PubMed  Google Scholar 

  143. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196

    PubMed  PubMed Central  Google Scholar 

  144. Park DC, Welsh RC, Marshuetz C, Gutchess AH, Mikels J, Polk TA, Noll DC, Taylor SF (2003) Working memory for complex scenes: age differences in frontal and hippocampal activations. J Cogn Neurosci 15:1122–1134

    PubMed  Google Scholar 

  145. Park DC, Polk TA, Park R, Minear M, Savage A, Smith MR (2004) Aging reduces neural specialization in ventral visual cortex. Proc Natl Acad Sci 101:13091–13095

    CAS  PubMed  Google Scholar 

  146. Park DC, Polk TA, Hebrank AC, Jenkins LJ (2010) Age differences in default mode activity on easy and difficult spatial judgment tasks. Front Human Neurosci 3:7

    Google Scholar 

  147. Peng S-L, Dumas JA, Park DC, Liu P, Filbey FM, McAdams CJ, Pinkham AE, Adinoff B, Zhang R, Lu H (2014) Age-related increase of resting metabolic rate in the human brain. NeuroImage 98:176–183

    PubMed  PubMed Central  Google Scholar 

  148. Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA (2007) Age differences in deactivation - a link to cognitive control? J Cogn Neurosci 19:1021–1032

    PubMed  Google Scholar 

  149. Persson J, Pudas S, Nilsson L-G, Nyberg L (2014) Longitudinal assessment of default- mode brain function in aging. Neurobiol Aging 35:2107–2117

    PubMed  Google Scholar 

  150. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Neuroscience 35:73–89

    CAS  Google Scholar 

  151. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE (2011) Functional network organization of the human brain. Neuron 72:665–678

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59:2142–2154

    PubMed  Google Scholar 

  153. Power JD, Silver BM, Silverman MR, Ajodan EL, Bos DJ, Jones RM (2019) Customized head molds reduce motion during resting state fMRI scans. NeuroImage 189:141–149

    PubMed  Google Scholar 

  154. Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF (2015a) ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112:267–277

    PubMed  Google Scholar 

  155. Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF (2015b) Evaluation of ICA- AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage 112:278–287

    PubMed  Google Scholar 

  156. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37:1083–1090

    PubMed  Google Scholar 

  157. Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128(Pt 9):1964–1983

    PubMed  Google Scholar 

  158. Raz N, Gunning FM, Head D, Dupuis JH, McQuain J, Briggs SD, Loken WJ, Thornton AE, Acker JD (1997) Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cereb Cortex 7:268–282

    CAS  PubMed  Google Scholar 

  159. Raz N, Gunning-Dixon F, Head D, Rodrigue KM, Williamson A, Acker JD (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25:377–396

    PubMed  Google Scholar 

  160. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689

    PubMed  Google Scholar 

  161. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51:501–511

    PubMed  PubMed Central  Google Scholar 

  162. Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23:3295–3301

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Current Directions Psychol Sci 17:177–182

    Google Scholar 

  164. Rieck JR, Rodrigue KM, Kennedy KM, Devous MD, Park DC (2015) The effect of beta-amyloid on face processing in young and old adults: a multivariate analysis of the BOLD signal. Hum Brain Mapp 36:2514–2526

    PubMed  PubMed Central  Google Scholar 

  165. Riecker A, Gröschel K, Ackermann H, Steinbrink C, Witte O, Kastrup A (2006) Functional significance of age-related differences in motor activation patterns. NeuroImage 32:1345–1354

    PubMed  Google Scholar 

  166. Robinson S, Basso G, Soldati N, Sailer U, Jovicich J, Bruzzone L, Kryspin-Exner I, Bauer H, Moser E (2009) A resting state network in the motor control circuit of the basal ganglia. BMC Neurosci 10:137

    PubMed  PubMed Central  Google Scholar 

  167. Ross MH, Yurgelun-Todd DA, Renshaw PF, Maas LC, Mendelson JH, Mello NK, Cohen BM, Levin JM (1997) Age-related reduction in functional MRI response to photic stimulation. Neurology 48:173–176

    CAS  PubMed  Google Scholar 

  168. Rossi S, Miniussi C, Pasqualetti P, Babiloni C, Rossini PM, Cappa SF (2004) Age- related functional changes of prefrontal cortex in long-term memory: a repetitive transcranial magnetic stimulation study. J Neurosci 24:7939–7944

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Royston P, Altman DG (1994) Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. Appl Stat 43:429

    Google Scholar 

  170. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–1069

    PubMed  Google Scholar 

  171. Rypma B, D’Esposito M (2000) Isolating the neural mechanisms of age-related changes in human working memory. Nat Neurosci 3:509–515

    CAS  PubMed  Google Scholar 

  172. Sala-Llonch R, Bartrés-Faz D, Junqué C (2015) Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psychol 6:663

    PubMed  PubMed Central  Google Scholar 

  173. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90:449–468

    PubMed  PubMed Central  Google Scholar 

  174. Sambataro F, Murty VP, Callicott JH, Tan H-Y, Das S, Weinberger DR, Mattay VS (2010) Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 31:839–852

    PubMed  Google Scholar 

  175. Sauerbrei W, Royston P (1999) Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. J Royal Stat Soc Series A (Statistics in Society) 162:71–94

    Google Scholar 

  176. Sauerbrei W, Meier-Hirmer C, Benner A, Royston P (2006) Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs. Comput Stat Data Anal 50:3464–3485

    Google Scholar 

  177. Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP, Maclin EL, Gratton G, Fabiani M (2010) Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 22:655–669

    PubMed  PubMed Central  Google Scholar 

  178. Schroeder W, Martin K, Lorensen B (2006) Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th Edition. Kitware, ISBN 978-1-930934-19-1

  179. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    CAS  PubMed  Google Scholar 

  180. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98

    PubMed  Google Scholar 

  181. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen- Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208–S219

    PubMed  Google Scholar 

  182. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045

    CAS  PubMed  Google Scholar 

  183. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. NeuroImage 54(2):875–891

    PubMed  Google Scholar 

  184. Solé-Padullés C, Bartrés-Faz D, Junqué C, Clemente IC, Molinuevo JL, Bargalló N, Sánchez-Aldeguer J, Bosch B, Falcón C, Valls-Solé J (2006) Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cereb Cortex 16:1487–1493

    PubMed  Google Scholar 

  185. Song J, Birn RM, Boly M, Meier TB, Nair VA, Meyerand ME, Prabhakaran V (2014) Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connectivity 4:662–676

    PubMed  PubMed Central  Google Scholar 

  186. Sperling R (2007) Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann N Y Acad Sci 1097:146–155

    PubMed  Google Scholar 

  187. Spreng RN, Wojtowicz M, Grady CL (2010) Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34:1178–1194

    PubMed  Google Scholar 

  188. Spreng RN, Stevens WD, Viviano JD, Schacter DL (2016) Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest. Neurobiol Aging 45:149–160

    PubMed  PubMed Central  Google Scholar 

  189. Stefanova I, Stephan T, Becker-Bense S, Dera T, Brandt T, Dieterich M (2013) Age- related changes of blood-oxygen-level-dependent signal dynamics during optokinetic stimulation. Neurobiol Aging 34:2277–2286

    PubMed  Google Scholar 

  190. Sugiura M (2016) Functional neuroimaging of normal aging: declining brain, adapting brain. Ageing Res Rev 30:61–72

    PubMed  Google Scholar 

  191. Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J (2013) Depression uncouples brain hate circuit. Mol Psychiatry 18:101–111

    CAS  PubMed  Google Scholar 

  192. Taoka T, Iwasaki S, Uchida H, Fukusumi A, Nakagawa H, Kichikawa K, Takayama K, Yoshioka T, Takewa M, Ohishi H (1998) Age correlation of the time lag in signal change on EPI-fMRI. J Comput Assist Tomogr 22:514–517

    CAS  PubMed  Google Scholar 

  193. Tomasi D, Volkow ND (2012) Aging and functional brain networks. Mol Psychiatry 17(5):549–558

    Google Scholar 

  194. Tsvetanov KA, Henson RNA, Tyler LK, Davis SW, Shafto MA, Taylor JR, Williams N, Cam-CAN, Rowe JB (2015) The effect of ageing on fMRI: correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Hum Brain Mapp 36:2248–2269

    PubMed  PubMed Central  Google Scholar 

  195. Uludağ K, Blinder P (2018) Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. NeuroImage 168:279–295

    PubMed  Google Scholar 

  196. Uludağ K, Müller-Bierl B, Ugurbil K (2009) An integrative model for neuronal activity- induced signal changes for gradient and spin echo functional imaging. NeuroImage 48:150–165

    PubMed  Google Scholar 

  197. van Wijk BCM, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5(10):e13701

    PubMed  PubMed Central  Google Scholar 

  198. van Dijk KRA, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431–438

    PubMed  Google Scholar 

  199. van den Heuvel MP, de Lange SC, Zalesky A, Seguin C, Yeo BTT, Schmidt R (2017) Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: issues and recommendations. NeuroImage 152:437–449

    PubMed  Google Scholar 

  200. Vij SG, Nomi JS, Dajani DR, Uddin LQ (2018) Evolution of spatial and temporal features of functional brain networks across the lifespan. NeuroImage 173:498–508

    PubMed  PubMed Central  Google Scholar 

  201. Wang L, Li Y, Metzak P, He Y, Woodward TS (2010) Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition. NeuroImage 50:862–872

    PubMed  Google Scholar 

  202. Wang M, Gamo NJ, Yang Y, Jin LE, Wang X-J, Laubach M, Mazer JA, Lee D, Arnsten AFT (2011) Neuronal basis of age-related working memory decline. Nature 476:210–213

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Ward LM, Aitchison RT, Tawse M, Simmers AJ, Shahani U (2015) Reduced haemodynamic response in the ageing visual cortex measured by absolute fNIRS. PLoS ONE 10:e0125012

    PubMed  PubMed Central  Google Scholar 

  204. West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D, Spence JS, Rypma B (2019) BOLD hemodynamic response function changes significantly with healthy aging. NeuroImage 188:198–207

    PubMed  Google Scholar 

  205. Wig GS (2017) Segregated Systems of Human Brain Networks. Trends Cogn Sci 21:981–996

    PubMed  Google Scholar 

  206. Wig GS, Laumann TO, Petersen SE (2014) An approach for parcellating human cortical areas using resting-state correlations. NeuroImage 93(Pt 2):276–291

    PubMed  Google Scholar 

  207. Wimble M, Yoder M, Ro YK (2016) Understanding least absolute value in regression- based data mining. Int J Data Mining Knowledge Manage Process 6:1–10

    Google Scholar 

  208. Wright ME, Wise RG (2018) Can blood oxygenation level dependent functional magnetic resonance imaging be used accurately to compare older and younger populations? A mini literature review. Front Aging Neurosci 10:371

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Wu J-T, Wu H-Z, Yan C-G, Chen W-X, Zhang H-Y, He Y, Yang H-S (2011) Aging-related changes in the default mode network and its anti-correlated networks: a resting- state fMRI study. Neurosci Lett 504:62–67

    CAS  PubMed  Google Scholar 

  210. Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T et al (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17(6):1220–1228

    CAS  PubMed  Google Scholar 

  211. Yan L, Zhuo Y, Wang B, Wang DJJ (2011) Loss of coherence of low frequency fluctuations of BOLD FMRI in visual cortex of healthy aged subjects. Open Neuroimaging J 5(Suppl 1):105–111

    Google Scholar 

  212. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    PubMed  Google Scholar 

  213. Yeo BTT, Krienen FM, Chee MWL, Buckner RL (2014) Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. NeuroImage 88:212–227

    PubMed  Google Scholar 

  214. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, Leirer VO (1982) Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 17:37–49

    PubMed  Google Scholar 

  215. Zalesky A, Fornito A, Bullmore E (2012) On the use of correlation as a measure of network connectivity. NeuroImage 60:2096–2106

    PubMed  Google Scholar 

  216. Zhang N, Gordon ML, Goldberg TE (2017) Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev 72:168–175

    CAS  PubMed  Google Scholar 

  217. Zhu Y, Cribben I (2018) Sparse graphical models for functional connectivity networks: best methods and the autocorrelation issue. Brain Connectivity 8:139–165

    PubMed  Google Scholar 

  218. Zonneveld HI, Pruim RH, Bos D, Vrooman HA, Muetzel RL, Hofman A, Rombouts SARB, van der Lugt A, Niessen WJ, Ikram MA, Vernooij MW (2019) Patterns of functional connectivity in an aging population: the Rotterdam Study. NeuroImage 189:432–444

    PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Canadian Institutes of Health Research (CIHR) operating grant (MOP11501) and the Natural Sciences and Engineering Research Council of Canada (NSERC) operating grant (06186) to N.V.M. S.H. was supported by the CIHR Doctoral Scholarship. The work of I.C. was partially supported by the NSERC operating grant (06638) and the Xerox Faculty Fellowship, Alberta School of Business.

Author information

Affiliations

Authors

Contributions

Conceptualization: SH and NVM; data collection: FO, PS, RC and NVM; data analysis: SH, IC, JM, CRM and NVM; manuscript writing, SH and NVM. All the co-authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Nikolai V. Malykhin.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 52217 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hrybouski, S., Cribben, I., McGonigle, J. et al. Investigating the effects of healthy cognitive aging on brain functional connectivity using 4.7 T resting-state functional magnetic resonance imaging. Brain Struct Funct 226, 1067–1098 (2021). https://doi.org/10.1007/s00429-021-02226-7

Download citation

Keywords

  • High-field fMRI
  • Resting-state fMRI
  • Brain aging
  • Network amplitude
  • Sparse graphs