Skip to main content
Log in

Speech rate association with cerebellar white-matter diffusivity in adults with persistent developmental stuttering

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Speech rate is a basic characteristic of language production, which affects the speaker’s intelligibility and communication efficiency. Various speech disorders, including persistent developmental stuttering, present altered speech rate. Specifically, adults who stutter (AWS) typically exhibit a slower speech rate compared to fluent speakers. Evidence from imaging studies suggests that the cerebellum contributes to the paced production of speech. People who stutter show structural and functional abnormalities in the cerebellum. However, the involvement of the cerebellar pathways in controlling speech rate remains unexplored. Here, we assess the association of the cerebellar peduncles with speech rate in AWS and control speakers. Diffusion MRI and speech-rate data were collected in 42 participants (23 AWS, 19 controls). We used deterministic tractography with Automatic Fiber segmentation and Quantification (AFQ) to identify the superior, middle, and inferior cerebellar peduncles (SCP, MCP, ICP) bilaterally, and quantified fractional anisotropy (FA) and mean diffusivity (MD) along each tract. No significant differences were observed between AWS and controls in the diffusivity values of the cerebellar peduncles. However, AWS demonstrated a significant negative association between speech rate and FA within the left ICP, a major cerebellar pathway that transmits sensory feedback signals from the olivary nucleus into the cerebellum. The involvement of the ICP in controlling speech production in AWS is compatible with the view that stuttering stems from hyperactive speech monitoring, where even minor deviations from the speech plan are considered as errors. In conclusion, our findings suggest a plausible neural mechanism for speech rate reduction observed in AWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Speech rate during fluent epochs is typically defined as ‘articulation rate’. While this is the more precise technical term for the measure we calculated, the term speech rate is maintained throughout the paper for the sake of simplicity.

References

  • Ackermann H (2008) Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci 31(6):265–272

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H, Brendel B (2016) Cerebellar contributions to speech and language. In: Neurobiology of language. Academic Press, pp 73–84

  • Adams M, Lewi J, Besozzi T (1973) The effect of reduced reading rate on stuttering frequency. J Speech Lang Hear Res 16(4):671–675

    Article  CAS  Google Scholar 

  • Alm PA (2004) Stuttering and the basal ganglia circuits: a critical review of possible relations. J Commun Disord 37(4):325–369

    Article  PubMed  Google Scholar 

  • Ambrose NG, Yairi E (1999) Normative disfluency data for early childhood stuttering. J Speech Lang Hear Res JSLHR 42(4):895–909

    Article  CAS  PubMed  Google Scholar 

  • Amir O (2016) Speaking rate among adult hebrew speakers: a preliminary observation. Ann Behav Sci 2(1):1–9

    Article  Google Scholar 

  • Amir O, Grinfeld D (2011) Articulation rate in childhood and adolescence: hebrew speakers. Lang Speech 54(2):225–240

    Article  PubMed  Google Scholar 

  • Amir O, Levine-Yundof R (2013) Listeners’ attitude toward people with dysphonia. J Voice 27(4):524.e1-524.e10

    Article  Google Scholar 

  • Andersson BYG, Armstrong DM (1987) Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol 385(1):107–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnstein D, Lakey B, Compton RJ, Kleinow J (2011) Preverbal error-monitoring in stutterers and fluent speakers. Brain Lang 116(3):105–115

    Article  PubMed  Google Scholar 

  • Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61

    Article  CAS  PubMed  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system: a technical review. NMR Biomed 15(7–8):435–455

    Article  PubMed  Google Scholar 

  • Blecher T, Tal I, Ben-Shachar M (2016) White matter microstructural properties correlate with sensorimotor synchronization abilities. NeuroImage 138:1–12

    Article  PubMed  Google Scholar 

  • Bohland JW, Guenther FH (2006) An fMRI investigation of syllable sequence production. NeuroImage 32(2):821–841

    Article  PubMed  Google Scholar 

  • Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW (2019) Age-dependent white matter characteristics of the cerebellar peduncles from infancy through adolescence. The Cerebellum 18(3):372–387

    Article  PubMed  Google Scholar 

  • Cai S, Beal DS, Ghosh SS, Tiede MK, Guenther FH, Perkell JS (2012) Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation. PLoS ONE 7(7):1–13

    Article  Google Scholar 

  • Cai S, Tourville JA, Beal DS, Perkell JS, Guenther FH, Ghosh SS (2014) Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies. Front Hum Neurosci 8:1–18

    Article  Google Scholar 

  • Chang S-E, Zhu DC (2013) Neural network connectivity differences in children who stutter. Brain 136(12):3709–3726

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang SE, Erickson KI, Ambrose NG, Hasegawa-Johnson MA, Ludlow CL (2008) Brain anatomy differences in childhood stuttering. Neuroimage 39(3):1333–1344

    Article  PubMed  Google Scholar 

  • Chang S-E, Horwitz B, Ostuni J, Reynolds R, Ludlow CL (2011) Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter. Cereb Cortex 21(11):2507–2518

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang S-E, Zhu DC, Choo AL, Angstadt M (2015) White matter neuroanatomical differences in young children who stutter. Brain 138(3):694–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Cieslak M, Ingham RJ, Ingham JC, Grafton ST (2015) Anomalous white matter morphology in adults who stutter. J Speech Lang Hear Res 58(2):268–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Civier O, Tasko SM, Guenther FH (2010) Overreliance on auditory feedback may lead to sound/syllable repetitions: simulations of stuttering and fluency-inducing conditions with a neural model of speech production. J Fluen Disord 35(3):246–279

    Article  Google Scholar 

  • Connally EL, Ward D, Howell P, Watkins KE (2014) Disrupted white matter in language and motor tracts in developmental stuttering. Brain Lang 131:25–35

    Article  PubMed  Google Scholar 

  • Daliri A, Wieland EA, Cai S, Guenther FH, Chang S-E (2018) Auditory-motor adaptation is reduced in adults who stutter but not in children who stutter. Dev Sci 21(2):e12521

    Article  Google Scholar 

  • de Andrade CRF, Cervone LM, Sassi FC (2003) Relationship between the stuttering severity index and speech rate. Sao Paulo Medical Journal = Revista Paulista de Medicina 121(2):81–84

    Article  PubMed  Google Scholar 

  • De Nil LF, Kroll RM, Lafaille SJ, Houle S (2003) A positron emission tomography study of short-and long-term treatment effects on functional brain activation in adults who stutter. J Fluen Disord 28(4):357–380

    Article  Google Scholar 

  • De Santis S, Drakesmith M, Bells S, Assaf Y, Jones DK (2014) Why diffusion tensor MRI does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain. NeuroImage 89:35–44

    Article  PubMed  Google Scholar 

  • Dietz V, Zijlstra W, Duysens J (1994) Human neuronal interlimb coordination during split-belt locomotion. Exp Brain Res 101(3):513–520

    Article  CAS  PubMed  Google Scholar 

  • Fox P, Ingham R, Ingham J, Zamarripa F, Xiong J, Lancaster J (2000) Brain correlates of stuttering and syllable production. A PET performance-correlation analysis. Brain 123(10):1985–2004

    Article  PubMed  Google Scholar 

  • Friston KJ, Ashburner J (2004) Generative and recognition models for neuroanatomy. NeuroImage 23(1):21–24

    Article  CAS  PubMed  Google Scholar 

  • Guenther FH (2006) Cortical interactions underlying the production of speech sounds. J Commun Disord 39(5):350–365

    Article  PubMed  Google Scholar 

  • Halag-Milo T, Stoppelman N, Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M (2016) Beyond production: brain responses during speech perception in adults who stutter. NeuroImage Clin 11:328–338

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall KD, Amir O, Yairi E (1999) A longitudinal investigation of speaking rate in preschool children who stutter. J Speech Lang Hear Res 42(6):1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT (2004) Does the representation of time depend on the cerebellum? effect of cerebellar stroke. Brain 127(3):561–574

    Article  PubMed  Google Scholar 

  • Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17(1):29–35

    Article  CAS  Google Scholar 

  • Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2018) Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. Nat Neurosci 21(5):736–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt AL, Popa LS, Ebner TJ (2015) Changes in Purkinje cell simple spike encoding of reach kinematics during adaption to a mechanical perturbation. J Neurosci 35(3):1106–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickok G (2012) Computatinal neuroanatomy of speech production. Nat Rev Neurosci 13(2):135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hore J, Flament D (1986) Evidence that a disordered servo-like mechanism contributes to tremor in movements during cerebellar dysfunction. J Neurophysiol 56:123–136

    Article  CAS  PubMed  Google Scholar 

  • Howell P (2004) Assessment of some contemporary theories of stuttering that apply to spontaneous speech. Contemp Issues Commun Sci Disord CICSD 31:122–139

    PubMed  Google Scholar 

  • Iimura D, Asakura N, Sasaoka T, Inui T (2019) Abnormal sensorimotor integration in adults who stutter: A behavioral study by adaptation of delayed auditory feedback. Front Psychol 10:1–11

    Article  Google Scholar 

  • Ingham RJ, Grafton ST, Bothe AK, Ingham JC (2012) Brain activity in adults who stutter: similarities across speaking tasks and correlations with stuttering frequency and speaking rate. Brain Lang 122(1):11–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivry R (1997) Cerebellar timing systems. Int Rev Neurobiol 41:555–573

    Article  CAS  PubMed  Google Scholar 

  • Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  • Jossinger S, Mawase F, Ben-Shachar M, Shmuelof L (2020) Locomotor adaptation is associated with microstructural properties of the inferior cerebellar peduncle. The Cerebellum 19(3):370–382

    Article  PubMed  Google Scholar 

  • Kavé G (2005) Standardization and norms for a Hebrew naming test. Brain Lang 92(2):204–211

    Article  PubMed  Google Scholar 

  • Kell CA, Neumann K, von Kriegstein K, Posenenske C, von Gudenberg AW, Euler H, Giraud A (2009) How the brain repairs stuttering. Brain 132(10):2747–2760

    Article  PubMed  Google Scholar 

  • Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G, Duffau H (2016) Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 263(1):157–167

    Article  PubMed  Google Scholar 

  • Kent RD, Rosenbek JC (1983) Acoustic patterns of apraxia of speech. J Speech Lang Hear Res 26(2):231–249

    Article  CAS  Google Scholar 

  • Kent RD, Kent JF, Rosenbek JC (1987) Maximum performance tests of speech production. J Speech Hear Disord 52(4):367–387

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Daliri A, Flanagan JR, Max L (2020) Dissociated development of speech and limb sensorimotor learning in stuttering: speech auditory-motor learning is impaired in both children and adults who stutter. Neuroscience 451:1–21

    Article  CAS  PubMed  Google Scholar 

  • Klein JC, Lorenz B, Kang J-S, Baudrexel S, Seifried C, van de Loo S, Steinmetz H, Deichmann R, Hilker R (2011) Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp 32(6):896–904

    Article  PubMed  Google Scholar 

  • Kloth SAM, Janssen P, Kraaimaat FW, Brutten GJ (1995) Speech-motor and linguistic skills of young stutterers prior to onset. J Fluen Disord 20(2):157–170

    Article  Google Scholar 

  • Korzeczek A, Cholin J, Jorschick A, Hewitt M, Sommer M (2020) Finger sequence learning in adults who stutter. Front Psychol 11(July):1–12

    Google Scholar 

  • Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M (2016a) The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct Funct 221(1):365–381

    Article  PubMed  Google Scholar 

  • Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M (2016b) Dorsal and ventral language pathways in persistent developmental stuttering. Cortex 81:79–92

    Article  PubMed  Google Scholar 

  • Kronfeld-Duenias V, Civier O, Amir O, Ezrati-Vinacour R, Ben-Shachar M (2018) White matter pathways in persistent developmental stuttering: Lessons from tractography. J Fluen Disord 55:68–83

    Article  Google Scholar 

  • Lebel C, Benner T, Beaulieu C (2012) Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. Magn Reson Med 68(2):474–483

    Article  PubMed  Google Scholar 

  • Leemans A, Jones DK (2009) The B -matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349

    Article  PubMed  Google Scholar 

  • Loucks TMJ, De Nil LF (2006) Anomalous sensorimotor integration in adults who stutter: a tendon vibration study. Neurosci Lett 402(1–2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Ning N, Peng D, Ding G, Li K, Yang Y, Lin C (2009) The role of large-scale neural interactions for developmental stuttering. Neuroscience 161(4):1008–1026

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Chen C, Peng D, You W, Zhang X, Ding G, Deng X, Yan Q, Howell P (2012) Neural anomaly and reorganization in speakers who stutter: a short-term intervention study. Neurology 79(7):625–632

    Article  PubMed  Google Scholar 

  • Mädler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Magn Reson Imaging 26(7):874–888

    Article  PubMed  Google Scholar 

  • Max L, Guenther F, Gracco V (2004) Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: a theoretical model of stuttering. Contemp Issues Commun Sci Disord 31:105–122

    Article  Google Scholar 

  • Molinari M, Leggio MG, Thaut MH (2007) The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum 6(1):18–23

    Article  PubMed  Google Scholar 

  • Morey RD, Rouder JN (2018) BayesFactor: computation of Bayes factors for common designs. R package version 0.9.12-4.2. https://CRAN.R-project.org/package=BayesFactor

  • Mori S, Crain BJ, Chacko VP, Van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269

    Article  CAS  PubMed  Google Scholar 

  • Neef NE, Anwander A, Bütfering C, Schmidt-Samoa C, Friederici AD, Paulus W, Sommer M (2018) Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain 141(1):191–204

    Article  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  PubMed  Google Scholar 

  • Perrini P, Tiezzi G, Castagna M, Vannozzi R (2013) Three-dimensional microsurgical anatomy of cerebellar peduncles. Neurosurg Rev 36(2):215–225

    Article  PubMed  Google Scholar 

  • Postma A, Kolk H (1993) The covert repair hypothesis: prearticulatory repair processes in normal and stuttered disfluencies. J Speech Hear Res 36(3):472–487

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymond J, Lisberger S, Mauk M (1996) The cerebellum: a neuronal learning machine? Science 272(5265):1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H (2005) fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 64(4):700–706

    Article  CAS  PubMed  Google Scholar 

  • Riecker A, Kassubek J, Gröschel K, Grodd W, Ackermann H (2006) The cerebral control of speech tempo: opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. NeuroImage 29(1):46–53

    Article  PubMed  Google Scholar 

  • Riley G (1994) Stuttering severity instrument for children and adults, 3rd edn. Pro-Ed, Austin, Texas

  • Rochman D, Amir O (2013) Examining in-session expressions of emotions with speech/vocal acoustic measures: an introductory guide. Psychother Res 23(4):381–393

    Article  PubMed  Google Scholar 

  • Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C (2004) Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med 51(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Sares AG, Deroche MLD, Shiller DM, Gracco VL (2019) Adults who stutter and metronome synchronization: evidence for a nonspeech timing deficit. Ann NY Acad Sci 1449(1):56–69

    PubMed  Google Scholar 

  • Schalling E, Hartelius L (2013) Speech in spinocerebellar ataxia. Brain Lang 127(3):317–322

    Article  PubMed  Google Scholar 

  • Schilling K, Gao Y, Janve V, Stepniewska I, Landman BA, Anderson AW (2017) Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? NMR Biomed 30(12):e3787

    Article  CAS  Google Scholar 

  • Shadmehr R (2017) Learning to predict and control the physics of our movements. J Neurosci 37(7):1663–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sitek KR, Cai S, Beal DS, Perkell JS, Guenther FH, Ghosh SS (2016) Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: whole-brain functional and structural connectivity associations with persistent developmental stuttering. Front Hum Neurosci 10(MAY2016):1–11

    Google Scholar 

  • Smits-Bandstra S, De Nil LF (2007) Sequence skill learning in persons who stutter: implications for cortico-striato-thalamo-cortical dysfunction. J Fluen Disord 32(4):251–278

    Article  Google Scholar 

  • Stikov N, Campbell JSW, Stroh T, Lavelée M, Frey S, Novek J, Nuara S, Ho MK, Bedell BJ, Dougherty RF, Leppert IR, Boudreau M, Narayanan S, Duval T, Cohen-Adad J, Picard PA, Gasecka A, Côté D, Pike GB (2015) In vivo histology of the myelin g-ratio with magnetic resonance imaging. NeuroImage 118:397–405

    Article  PubMed  Google Scholar 

  • Streng ML, Popa LS, Ebner TJ (2018) Complex spike wars: a new hope. The Cerebellum 17(6):735–746

    Article  PubMed  Google Scholar 

  • Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage 42(2):617–625

    Article  PubMed  Google Scholar 

  • Tourville JA, Guenther FH (2013) DIVA model for speech acquisition. Lang Cogn Process 26(7):1–27

    Google Scholar 

  • Travis KE, Leitner Y, Feldman HM, Ben-Shachar M (2015) Cerebellar white matter pathways are associated with reading skills in children and adolescents. Hum Brain Mapp 36(4):1536–1553

    Article  PubMed  Google Scholar 

  • Travis KE, Castro MRH, Berman S, Dodson CK, Mezer AA, Ben-Shachar M, Feldman HM (2019) More than myelin: probing white matter differences in prematurity with quantitative T1 and diffusion MRI. NeuroImage Clin 22:101756

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremblay P, Deschamps I, Gracco VL (2016) Neurobiology of speech production: a motor control perspective. In: Neurobiology of language. Academic Press, pp 741–750

  • Uddin MN, Figley TD, Solar KG, Shatil AS, Figley CR (2019) Comparisons between multi-component myelin water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures. Sci Rep 9(1):2500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasic N, Wijnen F (2005) Stuttering as a monitoring deficit. In: Hartsuiker RJ, Bastiaanse R, Postma A, Wijnen F (eds) Phonological encoding and monitoring in normal and pathological speech. Psychology Press, pp 226–247

  • Watkins KE, Smith SM, Davis S, Howell P (2007) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131(1):50–59

    Article  PubMed  Google Scholar 

  • Watkins K, Chesters J, Connally E (2015) The neurobiology of developmental stuttering. In: Hickok G SS (ed) Neurobiology of language. Elsevier, Amsterdam, pp 995–1004

    Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347

    Article  CAS  PubMed  Google Scholar 

  • Xuan Y, Meng C, Yang Y, Zhu C, Wang L, Yan Q, Lin C, Yu C (2012) Resting-state brain activity in adult males who stutter. PLoS ONE 7(1):e30570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yablonski M, Rastle K, Taylor JSH, Ben-Shachar M (2018) Structural properties of the ventral reading pathways are associated with morphological processing in adult English readers. Cortex 116:1–18

    Google Scholar 

  • Yang Y, Jia F, Siok WT, Tan LH (2016) Altered functional connectivity in persistent developmental stuttering. Sci Rep 6(1):19128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM (2012) Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE 7(11):e49790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B (2014) Spurious group differences due to head motion in a diffusion MRI study. NeuroImage 88:79–90

    Article  PubMed  Google Scholar 

  • Zimmermann G (1980a) Articulatory behaviors associated with stuttering. J Speech Lang Hear Res 23(1):108–121

    Article  CAS  Google Scholar 

  • Zimmermann G (1980b) Articulatory dynamics of fluent utterances of stutterers and nonstutterers. J Speech Lang Hear Res 23(1):95–107

    Article  CAS  Google Scholar 

  • Zimmermann G (1980c) Stuttering. J Speech Lang Hear Res 23(1):122–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted as part of Sivan Jossinger's doctoral dissertation, carried out under the supervision of Prof. Michal Ben-Shachar at the Gonda Multidisciplinary Brain Research Center, Bar-Ilan University. We thank the Israeli Stuttering Association (AMBI) for help with participant recruitment, and Dr. Ruth Ezrati-Vinacour for her involvement in the clinical evaluation of stuttering and her important contribution in earlier stages of this study. We also thank the team at the Wohl institute for advanced imaging in Tel Aviv Sourasky Medical Center, for assistance with protocol setup and MRI scanning. We are grateful to Maya Yablonski and Galit Agmon for fruitful discussions. Finally, we thank Assaf Kindler for his support.

Funding

This study is supported by the Israel Science Foundation (ISF Grant #1083/17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sivan Jossinger or Michal Ben-Shachar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 892 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jossinger, S., Kronfeld-Duenias, V., Zislis, A. et al. Speech rate association with cerebellar white-matter diffusivity in adults with persistent developmental stuttering. Brain Struct Funct 226, 801–816 (2021). https://doi.org/10.1007/s00429-020-02210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02210-7

Keywords

Navigation