Skip to main content

Advertisement

Log in

Developmental score of the infant brain: characterizing diffusion MRI in term- and preterm-born infants

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Large-scale longitudinal neuroimaging studies of the infant brain allow us to map the spatiotemporal development of the brain in its early phase. While the postmenstrual age (PMA) is commonly used as a time index to analyze longitudinal MRI data, the nonlinear relationship between PMA and MRI data imposes challenges for downstream analyses. We propose a mathematical model that provides a Developmental Score (DevS) as a data-driven time index to characterize the brain development based on MRI features. 319 diffusion tensor imaging (DTI) datasets were collected from 87 term-born and 66 preterm-born infants at multiple visits, which were automatically segmented based on the JHU neonatal atlas. The mean diffusivity (MD) and fractional anisotropy (FA) in 126 brain parcels were used in the model to derive DevS. We demonstrate that transforming the time index from PMA to DevS improves the linearity of the longitudinal changes in MD and FA in both gray and white matter structures. More importantly, regional developmental differences in DTI metrics between preterm- and term-born infants were identified more clearly using DevS, e.g. 79 structures showed significantly different regression patterns in MD between preterm- and term-born infants, compared to only 27 structures that showed group differences using PMA as the index. Therefore, the DevS model facilitates linear analyses of DTI metrics in the infant brain, and provides a useful tool to characterize altered brain development due to preterm-birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akazawa K, Chang L, Yamakawa R, Hayama S, Buchthal S, Alicata D, Andres T, Castillo D, Oishi K, Skranes J, Ernst T, Oishi K (2016) Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants. Neuroimage 128:167–179

    PubMed  Google Scholar 

  • Als H, Duffy FH, McAnulty GB, Rivkin MJ, Vajapeyam S, Mulkern RV, Warfield SK, Huppi PS, Butler SC, Conneman N, Fischer C, Eichenwald EC (2004) Early experience alters brain function and structure. Pediatrics 113:846–857

    PubMed  Google Scholar 

  • Anjari M, Srinivasan L, Allsop JM, Hajnal JV, Rutherford MA, Edwards AD, Counsell SJ (2007) Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. Neuroimage 35:1021–1027

    PubMed  Google Scholar 

  • Baldoli C, Scola E, Della Rosa PA, Pontesilli S, Longaretti R, Poloniato A, Scotti R, Blasi V, Cirillo S, Iadanza A, Rovelli R, Barera G, Scifo P (2015) Maturation of preterm newborn brains: a fMRI–DTI study of auditory processing of linguistic stimuli and white matter development. Brain Struct Funct 220:3733–3751

    PubMed  Google Scholar 

  • Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    CAS  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300

    Google Scholar 

  • Bilgel M, Prince JL, Wong DF, Resnick SM, Jedynak BM (2016) A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging. Neuroimage 134:658–670

    PubMed  Google Scholar 

  • Brain Development Cooperative G (2012) Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. Cereb Cortex 22:1–12

    Google Scholar 

  • Brossard-Racine M, McCarter R, Murnick J, Tinkleman L, Vezina G, Limperopoulos C (2019) Early extra-uterine exposure alters regional cerebellar growth in infants born preterm. Neuroimage Clin 21:101646

    PubMed  Google Scholar 

  • Brown TT, Kuperman JM, Chung Y, Erhart M, McCabe C, Hagler DJ Jr, Venkatraman VK, Akshoomoff N, Amaral DG, Bloss CS, Casey BJ, Chang L, Ernst TM, Frazier JA, Gruen JR, Kaufmann WE, Kenet T, Kennedy DN, Murray SS, Sowell ER, Jernigan TL, Dale AM (2012) Neuroanatomical assessment of biological maturity. Curr Biol 22:1693–1698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang L, Cloak C, Jiang CS, Farnham S, Tokeshi B, Buchthal S, Hedemark B, Smith LM, Ernst T (2009) Altered neurometabolites and motor integration in children exposed to methamphetamine in utero. Neuroimage 48:391–397

    CAS  PubMed  Google Scholar 

  • Chang L, Akazawa K, Yamakawa R, Hayama S, Buchthal S, Alicata D, Andres T, Castillo D, Oishi K, Skranes J, Ernst T, Oishi K (2016a) Delayed early developmental trajectories of white matter tracts of functional pathways in preterm-born infants: longitudinal diffusion tensor imaging data. Data Brief 6:1007–1015

    PubMed  PubMed Central  Google Scholar 

  • Chang L, Oishi K, Skranes J, Buchthal S, Cunningham E, Yamakawa R, Hayama S, Jiang CS, Alicata D, Hernandez A, Cloak C, Wright T, Ernst T (2016b) Sex-specific alterations of white matter developmental trajectories in infants with prenatal exposure to methamphetamine and tobacco. JAMA Psychiatry 73:1217–1227

    PubMed  PubMed Central  Google Scholar 

  • Christensen GE, Rabbitt RD, Miller MI (1996) Deformable templates using large deformation kinematics. IEEE Trans Image Process 5:1435–1447

    CAS  PubMed  Google Scholar 

  • Counsell SJ, Boardman JP (2005) Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. Semin Fetal Neonatal Med 10:403–410

    PubMed  Google Scholar 

  • Counsell SJ, Shen YJ, Boardman JP, Larkman DJ, Kapellou O, Ward P, Allsop JM, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2006) Axial and radial diffusivity in preterm infants who have diffuse white matter changes on magnetic resonance imaging at term-equivalent age. Pediatrics 117:376–386

    PubMed  Google Scholar 

  • Dean DC 3rd, O'Muircheartaigh J, Dirks H, Waskiewicz N, Walker L, Doernberg E, Piryatinsky I, Deoni SC (2015) Characterizing longitudinal white matter development during early childhood. Brain Struct Funct 220:1921–1933

    PubMed  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1976) Maximum likelihood from incomplete data via the EM algorithm. Int Conf R Stat Soc. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

    Article  Google Scholar 

  • Di Martino A, O’Connor D, Chen B, Alaerts K, Anderson JS, Assaf M, Balsters JH, Baxter L, Beggiato A, Bernaerts S, Blanken LME, Bookheimer SY, Braden BB, Byrge L, Castellanos FX, Dapretto M, Delorme R, Fair DA, Fishman I, Fitzgerald J, Gallagher L, Keehn RJJ, Kennedy DP, Lainhart JE, Luna B, Mostofsky SH, Müller R-A, Nebel MB, Nigg JT, O’Hearn K, Solomon M, Toro R, Vaidya CJ, Wenderoth N, White T, Craddock RC, Lord C, Leventhal B, Milham MP (2017) Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data 4:170010

    PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy FH, Als H, McAnulty GB (1990) Behavioral and electrophysiological evidence for gestational age effects in healthy preterm and fullterm infants studied two weeks after expected due date. Child Dev 61:271–286

    CAS  PubMed  Google Scholar 

  • Franke K, Luders E, May A, Wilke M, Gaser C (2012) Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. Neuroimage 63:1305–1312

    PubMed  Google Scholar 

  • Fryer SL, Frank LR, Spadoni AD, Theilmann RJ, Nagel BJ, Schweinsburg AD, Tapert SF (2008) Microstructural integrity of the corpus callosum linked with neuropsychological performance in adolescents. Brain Cogn 67:225–233

    PubMed  PubMed Central  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999a) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863

    CAS  PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Rajapakse JC, Vaituzis AC, Liu H, Berry YC, Tobin M, Nelson J, Castellanos FX (1999b) Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Prog Neuropsychopharmacol Biol Psychiatry 23:571–588

    CAS  PubMed  Google Scholar 

  • Gimenez M, Miranda MJ, Born AP, Nagy Z, Rostrup E, Jernigan TL (2008) Accelerated cerebral white matter development in preterm infants: a voxel-based morphometry study with diffusion tensor MR imaging. Neuroimage 41:728–734

    PubMed  Google Scholar 

  • Hagler DJ Jr, Hatton S, Cornejo MD, Makowski C, Fair DA, Dick AS, Sutherland MT, Casey BJ, Barch DM, Harms MP, Watts R, Bjork JM, Garavan HP, Hilmer L, Pung CJ, Sicat CS, Kuperman J, Bartsch H, Xue F, Heitzeg MM, Laird AR, Trinh TT, Gonzalez R, Tapert SF, Riedel MC, Squeglia LM, Hyde LW, Rosenberg MD, Earl EA, Howlett KD, Baker FC, Soules M, Diaz J, de Leon OR, Thompson WK, Neale MC, Herting M, Sowell ER, Alvarez RP, Hawes SW, Sanchez M, Bodurka J, Breslin FJ, Morris AS, Paulus MP, Simmons WK, Polimeni JR, van der Kouwe A, Nencka AS, Gray KM, Pierpaoli C, Matochik JA, Noronha A, Aklin WM, Conway K, Glantz M, Hoffman E, Little R, Lopez M, Pariyadath V, Weiss SR, Wolff-Hughes DL, DelCarmen-Wiggins R, Feldstein Ewing SW, Miranda-Dominguez O, Nagel BJ, Perrone AJ, Sturgeon DT, Goldstone A, Pfefferbaum A, Pohl KM, Prouty D, Uban K, Bookheimer SY, Dapretto M, Galvan A, Bagot K, Giedd J, Infante MA, Jacobus J, Patrick K, Shilling PD, Desikan R, Li Y, Sugrue L, Banich MT, Friedman N, Hewitt JK, Hopfer C, Sakai J, Tanabe J, Cottler LB, Nixon SJ, Chang L, Cloak C, Ernst T, Reeves G, Kennedy DN, Heeringa S, Peltier S, Schulenberg J, Sripada C, Zucker RA, Iacono WG, Luciana M, Calabro FJ, Clark DB, Lewis DA, Luna B, Schirda C, Brima T, Foxe JJ, Freedman EG, Mruzek DW, Mason MJ, Huber R, McGlade E, Prescot A, Renshaw PF, Yurgelun-Todd DA, Allgaier NA, Dumas JA, Ivanova M, Potter A, Florsheim P, Larson C, Lisdahl K, Charness ME, Fuemmeler B, Hettema JM, Maes HH, Steinberg J, Anokhin AP, Glaser P, Heath AC, Madden PA, Baskin-Sommers A, Constable RT, Grant SJ, Dowling GJ, Brown SA, Jernigan TL, Dale AM (2019) Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202:116091

    CAS  PubMed  Google Scholar 

  • Hasegawa T, Yamada K, Morimoto M, Morioka S, Tozawa T, Isoda K, Murakami A, Chiyonobu T, Tokuda S, Nishimura A, Nishimura T, Hosoi H (2011) Development of corpus callosum in preterm infants is affected by the prematurity. In vivo assessment of diffusion tensor imaging at term-equivalent age. Pediatr Res 69:249–254

    PubMed  Google Scholar 

  • Howell BR, Styner MA, Gao W, Yap PT, Wang L, Baluyot K, Yacoub E, Chen G, Potts T, Salzwedel A, Li G, Gilmore JH, Piven J, Smith JK, Shen D, Ugurbil K, Zhu H, Lin W, Elison JT (2019) The UNC/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development. Neuroimage 185:891–905

    PubMed  Google Scholar 

  • Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    CAS  PubMed  Google Scholar 

  • Jedynak BM, Lang A, Liu B, Katz E, Zhang Y, Wyman BT, Raunig D, Jedynak CP, Caffo B, Prince JL, Alzheimer's Disease Neuroimaging I (2012) A computational neurodegenerative disease progression score: method and results with the Alzheimer's disease Neuroimaging Initiative cohort. Neuroimage 63:1478–1486

    PubMed  Google Scholar 

  • Jernigan TL, Brown TT, Hagler DJ Jr, Akshoomoff N, Bartsch H, Newman E, Thompson WK, Bloss CS, Murray SS, Schork N, Kennedy DN, Kuperman JM, McCabe C, Chung Y, Libiger O, Maddox M, Casey BJ, Chang L, Ernst TM, Frazier JA, Gruen JR, Sowell ER, Kenet T, Kaufmann WE, Mostofsky S, Amaral DG, Dale AM, Pediatric Imaging N, Genetics S (2016) The pediatric imaging, neurocognition, and genetics (PING) data repository. Neuroimage 124:1149–1154

    PubMed  Google Scholar 

  • Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81:106–116

    PubMed  Google Scholar 

  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974

    CAS  PubMed  Google Scholar 

  • Li Y, Shea SM, Lorenz CH, Jiang H, Chou MC, Mori S (2013) Image corruption detection in diffusion tensor imaging for post-processing and real-time monitoring. PLoS ONE 8:e49764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira R, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D (2018) The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173:88–112

    PubMed  Google Scholar 

  • Miller MI, Christensen GE, Amit Y, Grenander U (1993) Mathematical textbook of deformable neuroanatomies. Proc Natl Acad Sci USA 90:11944–11948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR, McKinstry RC (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358

    CAS  PubMed  Google Scholar 

  • Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456

    PubMed  PubMed Central  Google Scholar 

  • Oishi K, Mori S, Donohue PK, Ernst T, Anderson L, Buchthal S, Faria A, Jiang H, Li X, Miller MI, van Zijl PC, Chang L (2011) Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. Neuroimage 56:8–20

    PubMed  Google Scholar 

  • Ortibus E, Verhoeven J, Sunaert S, Casteels I, de Cock P, Lagae L (2012) Integrity of the inferior longitudinal fasciculus and impaired object recognition in children: a diffusion tensor imaging study. Dev Med Child Neurol 54:38–43

    PubMed  Google Scholar 

  • Ostby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tonnessen P, Walhovd KB (2009) Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci 29:11772–11782

    PubMed  PubMed Central  Google Scholar 

  • Partridge SC, Mukherjee P, Henry RG, Miller SP, Berman JI, Jin H, Lu Y, Glenn OA, Ferriero DM, Barkovich AJ, Vigneron DB (2004) Diffusion tensor imaging: serial quantitation of white matter tract maturity in premature newborns. Neuroimage 22:1302–1314

    PubMed  Google Scholar 

  • Roos A, Kwiatkowski MA, Fouche JP, Narr KL, Thomas KG, Stein DJ, Donald KA (2015) White matter integrity and cognitive performance in children with prenatal methamphetamine exposure. Behav Brain Res 279:62–67

    CAS  PubMed  Google Scholar 

  • Rose SE, Hatzigeorgiou X, Strudwick MW, Durbridge G, Davies PS, Colditz PB (2008) Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med 60:761–767

    PubMed  Google Scholar 

  • Roussotte FF, Bramen JE, Nunez SC, Quandt LC, Smith L, O'Connor MJ, Bookheimer SY, Sowell ER (2011) Abnormal brain activation during working memory in children with prenatal exposure to drugs of abuse: the effects of methamphetamine, alcohol, and polydrug exposure. Neuroimage 54:3067–3075

    CAS  PubMed  Google Scholar 

  • Sadeghi N, Prastawa M, Fletcher PT, Wolff J, Gilmore JH, Gerig G (2013) Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. Neuroimage 68:236–247

    PubMed  Google Scholar 

  • Saksena S, Husain N, Malik GK, Trivedi R, Sarma M, Rathore RS, Pandey CM, Gupta RK (2008) Comparative evaluation of the cerebral and cerebellar white matter development in pediatric age group using quantitative diffusion tensor imaging. Cerebellum 7:392–400

    PubMed  Google Scholar 

  • Shi F, Yap PT, Wu GR, Jia HJ, Gilmore JH, Lin WL, Shen DG (2011) Infant brain atlases from neonates to 1-and 2-year-olds. PLoS ONE 6:e18746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sowell ER, Leow AD, Bookheimer SY, Smith LM, O'Connor MJ, Kan E, Rosso C, Houston S, Dinov ID, Thompson PM (2010) Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. J Neurosci 30:3876–3885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson DK, Inder TE, Faggian N, Johnston L, Warfield SK, Anderson PJ, Doyle LW, Egan GF (2011) Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI. Neuroimage 55:479–490

    PubMed  Google Scholar 

  • Van Braeckel K, Butcher PR, Geuze RH, van Duijn MA, Bos AF, Bouma A (2008) Less efficient elementary visuomotor processes in 7- to 10-year-old preterm-born children without cerebral palsy: an indication of impaired dorsal stream processes. Neuropsychology 22:755–764

    PubMed  Google Scholar 

  • van Kooij BJ, de Vries LS, Ball G, van Haastert IC, Benders MJ, Groenendaal F, Counsell SJ (2012) Neonatal tract-based spatial statistics findings and outcome in preterm infants. AJNR Am J Neuroradiol 33:188–194

    PubMed  PubMed Central  Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    PubMed  PubMed Central  Google Scholar 

  • Weisenfeld NI, Warfield SK (2009) Automatic segmentation of newborn brain MRI. Neuroimage 47:564–572

    PubMed  Google Scholar 

  • Wu D, Chang LD, Akazawa K, Oishi K, Skranes J, Ernst T, Oishi K (2017) Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI. Neuroimage 149:33–43

    PubMed  Google Scholar 

  • Yap QJ, Teh I, Fusar-Poli P, Sum MY, Kuswanto C, Sim K (2013) Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies. J Neural Transm (Vienna) 120:1369–1395

    Google Scholar 

  • Yoo SS, Park HJ, Soul JS, Mamata H, Park H, Westin CF, Bassan H, Du Plessis AJ, Robertson RL Jr, Maier SE, Ringer SA, Volpe JJ, Zientara GP (2005) In vivo visualization of white matter fiber tracts of preterm- and term-infant brains with diffusion tensor magnetic resonance imaging. Invest Radiol 40:110–115

    PubMed  Google Scholar 

  • Zhang L, Thomas KM, Davidson MC, Casey BJ, Heier LA, Ulug AM (2005) MR quantitation of volume and diffusion changes in the developing brain. AJNR Am J Neuroradiol 26:45–49

    PubMed  PubMed Central  Google Scholar 

  • Zuo X-N, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP (2017) Human connectomics across the life span. Trends Cogn Sci 21:32–45

    PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Murat Bilgel at the National Institute for Aging for the important discussions of the mathematical model and the optimization procedures, Dr. Steven Buchthal for the MRI data acquisition and image quality control, and Dr. Doris Lin, a board-certified Neuroradiologist, for MRI reading. This grant is made possible by the following funding supports: Ministry of Science and Technology of the People’s Republic of China (2018YFE0114600, DW), National Natural Science Foundation of China (61801424 and 81971606, DW) and National Institutes of Health (R01HD065955, KO; U54NS056889 and 2K24DA16170, LC). None of the authors has a conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Oishi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Chang, L., Ernst, T.M. et al. Developmental score of the infant brain: characterizing diffusion MRI in term- and preterm-born infants. Brain Struct Funct 225, 2431–2445 (2020). https://doi.org/10.1007/s00429-020-02132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02132-4

Keywords

Navigation