Skip to main content

Advertisement

Log in

Aerobic exercise increases sprouting angiogenesis in the male rat motor cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Exercise is beneficial to brain health, and historically, the advantageous effects of exercise on the brain have been attributed to neuronal plasticity. However, it has also become clear that the brain vascular system also exhibits plasticity in response to exercise. This plasticity occurs in areas involved in movement, such as the motor cortex. This experiment aimed to further characterize the effects of exercise on structural vascular plasticity in the male rat motor cortex, by specifically identifying whether features of angiogenesis, the growth of new capillaries, or changes in vessel diameter were present. Male rats in the exercise group engaged in a 5-week bout of voluntary wheel running, while a second group of rats remained sedentary. After the exercise regimen, vascular corrosion casts, resin replicas of the brain vasculature, were made for all animals and imaged using a scanning electron microscope. Results indicate sprouting angiogenesis was the primary form of structural vascular plasticity detected in the motor cortex under these aerobic exercise parameters. Additionally, exercised rats displayed a slight increase in capillary diameter and expanded endothelial cell nuclei diameters in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackermann M, Konerding MA (2015) Vascular casting for the study of vascular morphogenesis. In: Ribatti D (ed) Vascular morphogenesis: methods and protocolsm. Springer, New York, pp 49–66

    Google Scholar 

  • Adair TH, Montani J-P (2010) Overview of angiogenesis, Morgan & Claypool Life Sciences.

  • Arribas SM, González C, Graham D, Dominiczak AF, McGrath JC (1997) Cellular changes induced by chronic nitric oxide inhibition in intact rat basilar arteries revealed by confocal microscopy. J Hypertens 15:1685

    CAS  PubMed  Google Scholar 

  • Babiak A et al (2004) Coordinated activation of VEGFR-1 and VEGFR-2 is a potent arteriogenic stimulus leading to enhancement of regional perfusion. Cardiovasc Res 61:789–795

    CAS  PubMed  Google Scholar 

  • Barnes JN, Corkery AT (2020) Exercise improves vascular function, but does this translate to the brain? Brain Plast 4:65–79

    Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568–5572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bloor CM (2005) Angiogenesis during exercise and training. Angiogenesis 8:263–271

    PubMed  Google Scholar 

  • Brockett AT, LaMarca EA, Gould E (2015) Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS ONE 10:e0124859

    PubMed  PubMed Central  Google Scholar 

  • Brown J et al (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046

    PubMed  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    PubMed  Google Scholar 

  • Buschmann I, Schaper W (1999) Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. Physiology 14:121–125

    Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chantler PD et al (2015) Cerebral cortical microvascular rarefication in metabolic syndrome is dependent on insulin resistance and loss of nitric oxide bioavailability. Microcirculation 22:435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinsomboon J et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA 106:21401–21406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen LOD et al (2000) Cerebral activation during bicycle movements in man. Exp Brain Res 135:66–72

    CAS  PubMed  Google Scholar 

  • Christoffersonm RH, Nilsson BO (1988) Microvascular corrosion casting with analysis in the scanning electron microscope. Scanning 10:43–63

    Google Scholar 

  • Clark PJ et al (2008) Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience 155:1048–1058

    CAS  PubMed  Google Scholar 

  • Clark PJ, Brzezinska WJ, Puchalski EK, Krone DA, Rhodes JS (2009) Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus 19:937–950

    PubMed  PubMed Central  Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    CAS  PubMed  Google Scholar 

  • Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    CAS  PubMed  Google Scholar 

  • Csiszar A et al (2017) Hypertension impairs neurovascular coupling and promotes microvascular injury: role in exacerbation of Alzheimer’s disease. GeroScience 39:359–372

    PubMed  PubMed Central  Google Scholar 

  • Cudmore RH, Dougherty SE, Linden DJ (2017) Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise. J Cereb Blood Flow Metab 37:3725–3743

    PubMed  PubMed Central  Google Scholar 

  • De Silva TM, Faraci FM (2016) Microvascular dysfunction and cognitive impairment. Cell Mol Neurobiol 36:241–258

    PubMed  PubMed Central  Google Scholar 

  • Deak F, Freeman WM, Ungvari Z, Csiszar A, Sonntag WE (2016) Recent developments in understanding brain aging: implications for Alzheimer’s disease and vascular cognitive impairment. J Gerontol Ser A 71:13–20

    CAS  Google Scholar 

  • Deng J, Zhang J, Feng C, Xiong L, Zuo Z (2014) Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in mice. Cardiovasc Res 103:473–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Francescomarino S, Sciartilli A, Di Valerio V, Di Baldassarre A, Gallina S (2009) The effect of physical exercise on endothelial function. Sports Med 39:797–812

    PubMed  Google Scholar 

  • Ding Y et al (2004a) Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124:583–591

    CAS  PubMed  Google Scholar 

  • Ding Y-H et al (2004b) Exercise-induced overexpression of angiogenic factors and reduction of ischemia / reperfusion injury in stroke. Curr Neurovasc Res 5:411–420

    Google Scholar 

  • Ding Y-H, Ding Y, Li J, Bessert DA, Rafols JA (2006a) Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res 28:184–189

    PubMed  Google Scholar 

  • Ding Y-H et al (2006b) Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res 3:15–23

    CAS  PubMed  Google Scholar 

  • Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314:107–117

    PubMed  Google Scholar 

  • Dorr A et al (2017) Effects of voluntary exercise on structure and function of cortical microvasculature. J Cereb Blood Flow Metab 37:1046–1059

    PubMed  Google Scholar 

  • Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabel K, Kempermann G (2008) Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med 10:59–66

    CAS  PubMed  Google Scholar 

  • Farmer J et al (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79

    CAS  PubMed  Google Scholar 

  • Filipa M et al (2013) Endothelial cell–dependent regulation of arteriogenesis. Circ Res 113:1076–1086

    Google Scholar 

  • Fontes EB et al (2015) Brain activity and perceived exertion during cycling exercise: an fMRI study. Br J Sports Med 49:556–560

    PubMed  Google Scholar 

  • Halliday MR, Abeydeera D, Lundquist AJ, Petzinger GM, Jakowec MW (2019) Intensive treadmill exercise increases expression of hypoxia-inducible factor 1α and its downstream transcript targets: a potential role in neuroplasticity. NeuroReport 30:619–627

    CAS  PubMed  Google Scholar 

  • Hase Y et al (2019) White matter capillaries in vascular and neurodegenerative dementias. Acta Neuropathol Commun 7:16

    PubMed  PubMed Central  Google Scholar 

  • Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45–55

    CAS  PubMed  Google Scholar 

  • Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65

    CAS  PubMed  Google Scholar 

  • Hoier B et al (2012) Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590:595–606

    CAS  PubMed  Google Scholar 

  • Hübner L, Godde B, Voelcker-Rehage C (2018) Acute exercise as an intervention to trigger motor performance and EEG beta activity in older adults. Neural Plast 2018:4756785

    PubMed  PubMed Central  Google Scholar 

  • Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR (2006) Changes in capillary shear stress in skeletal muscles exposed to long-term activity: role of nitric oxide. Microcirculation 13:249–259

    CAS  PubMed  Google Scholar 

  • Iadecola C, Davisson RL (2008) Hypertension and cerebrovascular dysfunction. Cell Metab 7:476–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT (1992) Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 12:110–119

    CAS  PubMed  Google Scholar 

  • Jin K et al (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junichiro S et al (2003) Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia. Stroke 34:783–789

    Google Scholar 

  • Kerr AL, Swain RA (2011) Rapid cellular genesis and apoptosis: effects of exercise in the adult rat. Behav Neurosci 125:1–9

    PubMed  Google Scholar 

  • Kerr AL, Steuer EL, Pochtarev V, Swain RA (2010) Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 171:214–226

    CAS  PubMed  Google Scholar 

  • Kinni H et al (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 1388:48–55

    CAS  PubMed  Google Scholar 

  • Kiuchi T, Lee H, Mikami T (2012) Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207:208–217

    CAS  PubMed  Google Scholar 

  • Kleim JA, Cooper NR, VandenBerg PM (2002) Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res 934:1–6

    CAS  PubMed  Google Scholar 

  • Kon K, Fujii S, Kosaka H, Fujiwara T (2003) Nitric oxide synthase inhibition by N(G)-nitro-l-arginine methyl ester retards vascular sprouting in angiogenesis. Microvasc Res 65:2–8

    CAS  PubMed  Google Scholar 

  • Krucker T, Lang A, Meyer EP (2006) New polyurethane-based material for vascular corrosion casting with improved physical and imaging characteristics. Microsc Res Tech 69:138–147

    CAS  PubMed  Google Scholar 

  • Kus LH et al (2014) Angiogenesis in costal cartilage graft laryngotracheoplasty: a corrosion casting study in piglets. The Laryngoscope 124:2411–2417

    PubMed  Google Scholar 

  • Lange-Asschenfeldt C, Kojda G (2008) Alzheimer’s disease, cerebrovascular dysfunction and the benefits of exercise: From vessels to neurons. Exp Gerontol 43:499–504

    CAS  PubMed  Google Scholar 

  • Latimer CS et al (2011) Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice. PLoS One 6:e26812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-W, Bae S-H, Jeong J-W, Kim S-H, Kim K-W (2004) Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions. Exp Mol Med 36:1–12

    PubMed  Google Scholar 

  • Leuner B, Gould E, Shors TJ (2002) Is there a link between adult neurogenesis and learning? Hippocampus 12:578–584

    PubMed Central  Google Scholar 

  • Li J et al (2005) Increased astrocyte proliferation in rats after running exercise. Neurosci Lett 386:160–164

    CAS  PubMed  Google Scholar 

  • Li S, Haigh K, Haigh JJ, Vasudevan A (2013) Endothelial VEGF sculpts cortical cytoarchitecture. J Neurosci 33:14809–14815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd PG, Prior BM, Yang HT, Terjung RL (2003) Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 284:H1668–H1678

    CAS  PubMed  Google Scholar 

  • Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci 101:9833–9838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12:113–123

    CAS  PubMed  Google Scholar 

  • Marín-Burgin A, Schinder AF (2012) Requirement of adult-born neurons for hippocampus-dependent learning. Behav Brain Res 227:391–399

    PubMed  Google Scholar 

  • Masamoto K et al (2014) Microvascular sprouting, extension, and creation of new capillary connections with adaptation of the neighboring astrocytes in adult mouse cortex under chronic hypoxia. J Cereb Blood Flow Metab 34:325–331

    CAS  PubMed  Google Scholar 

  • McCloskey DP, Adamo DS, Anderson BJ (2001) Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Res 891:168–175

    CAS  PubMed  Google Scholar 

  • Mentzer SJ, Konerding MA (2014) Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 17:499–509

    PubMed  PubMed Central  Google Scholar 

  • Meyer EP, Ulmann-Schuler A, Staufenbiel M, Krucker T (2008) Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci USA 105:3587–3592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morland C et al (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8:15557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak-Sliwinska P et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21:425–532

    PubMed  PubMed Central  Google Scholar 

  • Olfert IM, Baum O, Hellsten Y, Egginton S (2016) Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 310:H326–H336

    PubMed  Google Scholar 

  • Padilla J et al (2011) Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiol Bethesda Md 26:132–145

    Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    CAS  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Cambridge Academic Press, Cambridge

    Google Scholar 

  • Pereira AC et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638–5643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Podcasy JL (2016) Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 18:437–446

    PubMed  PubMed Central  Google Scholar 

  • Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    CAS  PubMed  Google Scholar 

  • Querido JS, Sheel AW (2007) Regulation of cerebral blood flow during exercise. Sports Med 37:765–782

    PubMed  Google Scholar 

  • Rhyu IJ et al (2010) Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 167:1239–1248

    CAS  PubMed  Google Scholar 

  • Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372:157–165

    CAS  PubMed  Google Scholar 

  • Riddle DR, Sonntag WE, Lichtenwalner RJ (2003) Microvascular plasticity in aging. Ageing Res Rev 2:149–168

    PubMed  Google Scholar 

  • Rosa AI et al (2010) The angiogenic factor angiopoietin-1 is a proneurogenic peptide on subventricular zone stem/progenitor cells. J Neurosci 30:4573–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schierling W et al (2009) Increased intravascular flow rate triggers cerebral arteriogenesis. J Cereb Blood Flow Metab 29:726–737

    PubMed  Google Scholar 

  • Schmidt W, Endres M, Dimeo F, Jungehulsing GJ (2013) Train the vessel, gain the brain: physical activity and vessel function and the impact on stroke prevention and outcome in cerebrovascular disease. Cerebrovasc Dis 35:303–312

    PubMed  Google Scholar 

  • Shimada H et al (2017) Effects of exercise on brain activity during walking in older adults: a randomized controlled trial. J NeuroEngineering Rehabil 14:50

    Google Scholar 

  • Siddiqui AJ et al (2003) Combination of angiopoietin-1 and vascular endothelial growth factor gene therapy enhances arteriogenesis in the ischemic myocardium. Biochem Biophys Res Commun 310:1002–1009

    CAS  PubMed  Google Scholar 

  • Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne RJ (2015) HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience 295:23–38

    CAS  PubMed  Google Scholar 

  • Smith JC, Paulson ES, Cook DB, Verber MD, Tian Q (2010) Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: Implications for fMRI. J Neurosci Methods 191:258–262

    PubMed  Google Scholar 

  • Spiegelaere WD et al (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res 49:390–404

    PubMed  Google Scholar 

  • Steinert JR, Chernova T, Forsythe ID (2010) Nitric oxide signaling in brain function, dysfunction, and dementia. The Neuroscientist 16:435–452

    CAS  PubMed  Google Scholar 

  • Stevenson ME, Behnke VK, Swain RA (2018) Exercise pattern and distance differentially affect hippocampal and cerebellar expression of FLK-1 and FLT-1 receptors in astrocytes and blood vessels. Behav Brain Res 337:8–16

    CAS  PubMed  Google Scholar 

  • Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V (2011) Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol 202:213–223

    CAS  Google Scholar 

  • Swain RA et al (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117:1037–1046

    CAS  PubMed  Google Scholar 

  • Swain RA et al (2012) On aerobic exercise and behavioral and neural plasticity. Brain Sci 2:709–744

    PubMed  PubMed Central  Google Scholar 

  • Takimoto M, Hamada T (2014) Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. J Appl Physiol 116:1238–1250

    CAS  PubMed  Google Scholar 

  • Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H (2012) The effects of aerobic activity on brain structure. Front Psychol 3:86

    PubMed  PubMed Central  Google Scholar 

  • Tkachenko E et al (2013) The nucleus of endothelial cell as a sensor of blood flow direction. Biol Open 2:1007–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucsek Z et al (2014) Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol Ser A 69:1339–1352

    CAS  Google Scholar 

  • van Praag H (2008) Neurogenesis and exercise: past and future directions. NeuroMolecular Med 10:128–140

    PubMed  Google Scholar 

  • van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290

    PubMed  PubMed Central  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999a) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999b) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96:13427–13431

    PubMed  PubMed Central  Google Scholar 

  • van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685

    PubMed  PubMed Central  Google Scholar 

  • Van Steenkiste C et al (2010) Vascular corrosion casting: analyzing wall shear stress in the portal vein and vascular abnormalities in portal hypertensive and cirrhotic rodents. Lab Invest 90:1558–1572

    PubMed  Google Scholar 

  • Vivar C, Peterson BD, van Praag H (2016) Running rewires the neuronal network of adult-born dentate granule cells. NeuroImage 131:29–41

    PubMed  Google Scholar 

  • Voss MW, Nagamatsu LS, Liu-Ambrose T, Kramer AF (2011) Exercise, brain, and cognition across the life span. J Appl Physiol 111:1505–1513

    PubMed  PubMed Central  Google Scholar 

  • Wagner PD (2001) Skeletal muscle angiogenesis A possible role for hypoxia. Adv Exp Med Biol 502:21–38

    CAS  PubMed  Google Scholar 

  • Yu Q, Tao H, Wang X, Li M (2015) Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke. Neural Regen Res 10:1882–1891

    PubMed  PubMed Central  Google Scholar 

  • Zhang P et al (2013) Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model. J NeuroEngineering Rehabil 10:43

    Google Scholar 

  • Zhao L, Mao Z, Woody SK, Brinton RD (2016) Sex differences in metabolic aging of the brain: Insights into female susceptibility to Alzheimer’s disease. Neurobiol Aging 42:69–79

    PubMed  PubMed Central  Google Scholar 

  • Ziche M et al (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Amanda S. Nazario, Brittany S. Larsen, and Yael S. Greenburg for their contributions to data collection. When optimizing the vascular corrosion cast procedure, we appreciate the advice received from Dr. Eric P. Meyer and Dominic D. Quintana. We are also grateful to Dr. Marianna Orlova for her assistance with lyophilization of the samples.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the experiment. The vascular corrosion casts were generated by MES and CCM. The scanning electron microscopy was completed by MES under the direction of HAO. Data were analyzed and interpreted by MES, and MES wrote the manuscript. All authors edited and approved the final manuscript.

Corresponding authors

Correspondence to Morgan E. Stevenson or Rodney A. Swain.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, M.E., Miller, C.C., Owen, H.A. et al. Aerobic exercise increases sprouting angiogenesis in the male rat motor cortex. Brain Struct Funct 225, 2301–2314 (2020). https://doi.org/10.1007/s00429-020-02100-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02100-y

Keywords

Navigation