Skip to main content
Log in

Long-term potentiation of the nucleus reuniens and entorhinal cortex to CA1 distal dendritic synapses in mice

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The present study investigated the short-term and long-term synaptic plasticity of excitatory synapses formed by the nucleus reuniens (RE) and entorhinal cortex (EC) on the distal apical dendrites of CA1 pyramidal cells. RE-CA1 synapses are implicated in memory involving the hippocampus and medial prefrontal cortex. Current source density (CSD) analysis was used to identify excitatory and inhibitory currents following stimulation of RE or medial perforant path (MPP) in urethane-anesthetized mice in vivo. At the distal apical dendrites, RE evoked an initial excitatory sink followed by inhibitory sources at short (~ 30 ms) and long (150–200 ms) latencies, and often showing gamma (25–40 Hz) oscillations. Both RE-evoked and spontaneous gamma-frequency local field potentials displayed the same CSD depth profile. Paired-pulse facilitation (PPF) of the distal excitatory sink at 20–200 ms interpulse intervals was observed following RE stimulation, generally higher than that following MPP stimulation. Theta-frequency burst stimulation (TBS) of RE induced input-specific long-term potentiation (LTP) at the distal dendritic CA1 synapses, accompanied by reduction of PPF. After TBS of the MPP, the MPP-CA1 distal dendritic synapse could manifest LTP or long-term depression, but the non-tetanized RE-CA1 synapse was typically potentiated. Heterosynaptic potentiation of the RE to CA1 distal synapses may occur after repeated activity of EC afferents, or spread of MPP stimulus currents to coursing RE afferents. The results indicate a propensity of RE-CA1 distal excitatory synapses to show PPF, LTP and gamma oscillations, all of which may participate in memory processing by RE and EC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source density (CSD) time transients following stimulation of the nucleus reuniens (RE) or medial perforant path (MPP). a Thionin-stained sections showing location of stimulating electrode (after lesion) at the RE (leftmost) and medial part of the angular bundle (AB, rightmost) to activate the MPP; recording probe was inserted into CA1a near the subiculum (sub). b Schematic CA1 pyramidal cell and dentate gyrus granule cell (left), showing AEPs (n = 24 sweeps) and CSDs folliwng stimulation of RE at 300 µA, at 1.5 × threshold intensity (columns 1 and 2), or MPP stimulation at 60 µA, at 2 × threshold intensity (columns 3 and 4). Excitation of the distal apical dendrites was characterized by negative potentials (and current sinks) at stratum lacunosum-moleculare (SLM) and positive potentials (and current sources) at stratum radiatum (RAD). Other layers are: OR stratum oriens, PYR stratum pyramidale, MML middle molecular layer, GCL granule cell layer. Filled circle indicates stimulus artifact

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

source appeared together with large MML sinks. b MPP evoked average CSD profiles in 30-min time blocks, at 10.4 ms latency. There was little potentiation of the MPP-evoked CSDs in CA1, but potentiation in the DG, maximal sinks at MML, was observed. c Time course of E1 slope and E1 peak measures of the MPP to CA1 SLM sink, and E1 peak measure of the MPP to DG MML sink

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aksoy-Aksel A, Manahan-Vaughan D (2015) Synaptic strength at the temporoammonic input to the hippocampal CA1 region in vivo is regulated by NMDA receptors, metabotropic glutamate receptors and voltage-gated calcium channels. Neuroscience 309:191–199

    CAS  PubMed  Google Scholar 

  • Al-Onaizi MA, Parfitt GM, Kolisnyk B, Law CSH, Guzman MS, Barros DM, Leung LS, Prado MAM, Prado VF (2016) Regulation of cognitive processing by hippocampal cholinergic tone. Cereb Cortex. https://doi.org/10.1093/cercor/bhv349

    Article  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neurosci 31:571–591

    CAS  Google Scholar 

  • Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phase-phase coupling between ɵ and ɤ oscillations in the hippocampus. J Neurosci 32:423–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benito N, Fernandez-Ruiz A, Makarov VA, Makarova J, Korovaichuk A, Herreras O (2014) Spatial modules of coherent activity in pathway-specific LFPs in the hippocampus reflect topology and different modes of presynaptic synchronization. Cereb Cortex 24:1738–1752

    CAS  PubMed  Google Scholar 

  • Bertram EH, Zhang DX (1999) Thalamic excitation of hippocampal CA1 neurons: a comparison with the effects of CA3 stimulation. Neuroscience 92:15–26

    CAS  PubMed  Google Scholar 

  • Bliss TVP, Collingridge G, Morris R (2007) Synaptic plasticity in the hippocampus. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, Oxford, pp 343–434

    Google Scholar 

  • Bragin A, Jando G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma frequency (40–100 Hz) patterns in the hippocampus of the behaving rat. J Neurosci 15:47–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB (2008) Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron 57:290–302

    CAS  PubMed  Google Scholar 

  • Brun VH, Otnæss MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    CAS  PubMed  Google Scholar 

  • Capogna M (2011) Neurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal-hippocampal dialogue. J Physiol 589:1875–1883

    CAS  PubMed  Google Scholar 

  • Charpak S, Pare D, Llinas R (1995) The entorhinal cortex entrains fast CA1 hippocampal oscillations in the anaesthetized guinea-pig: role of the monosynaptic component of the perforant path. Eur J Neurosci 7:1548–1557

    CAS  PubMed  Google Scholar 

  • Cholvin T, Loureiro M, Cassel R, Cosquer B, Geiger K, De Sa ND, Raingard H, Robelin L, Kelche C, Pereira de Vasconcelos A, Cassel JC (2013) The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. J Neurosci 33:8772–8783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Buzsáki G (1998) Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci 18:388–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clement EA, Richard A, Thwaites M, Ailon J, Peters S, Dickson CT (2008) Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS ONE 3(4):e2004

    PubMed  PubMed Central  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357

    CAS  PubMed  Google Scholar 

  • Creager R, Dunwiddie T, Lynch G (1980) Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J Physiol (Lond) 299:409–424

    CAS  Google Scholar 

  • Csicsvari J, Jamieson B, Wise KD, Buzsáki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322

    CAS  PubMed  Google Scholar 

  • Davoodi FG, Motamedi F, Naghdi N, Akbari E (2009) Effect of reversible inactivation of the reuniens nucleus on spatial learning and memory in rats using Morris water maze task. Behav Brain Res 198:130–135

    PubMed  Google Scholar 

  • Dolleman-van der Weel MJ, Lopes da Silva FH, Witter MP (2017) Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat. Brain Struct Funct 222:2421–2438

    CAS  PubMed  Google Scholar 

  • Dolleman-van der Weel MJ, Morris RG, Witter MP (2009) Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning. Brain Struct Funct 213:329–342

    PubMed  Google Scholar 

  • Dolleman-van der Weel MJ, Witter MP (2000) Nucleus reuniens thalami innervates gamma aminobutyric acid positive cells in hippocampal field CA1 of the rat. Neurosci Lett 278:145–148

    CAS  PubMed  Google Scholar 

  • Dolleman-van der Weel MJ, Lopes da Silva FH, Witter MP (1997) Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. J Neurosci 17:5640–5650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolleman-van der Weel MJ, Witter MP (1996) Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364:637–650

    CAS  PubMed  Google Scholar 

  • Eleore L, López-Ramos JC, Guerra-Narbona R, Delgado-García JM (2011) Role of reuniens nucleus projections to the medial prefrontal cortex and to the hippocampal pyramidal CA1 area in associative learning. PLoS ONE. https://doi.org/10.1371/journal.pone.0023538

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Ruiz A, Makarov VA, Benito N, Herreras O (2012) Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units. J Neurosci 32:5165–5176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Ruiz A, Oliva A, Nagy GA, Maurer AP, Berenyi A, Buzsáki G (2017) Entorhinal-CA3 dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron 93:1213–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin K, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    CAS  PubMed  Google Scholar 

  • Fung TK, Law C, Leung LS (2016) Associative spike-timing dependent potentiation of the basal dendritic excitatory synapses in the hippocampus in vivo. J Neurophysiol 115:3264–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez J, Villarreal DM, Morales IS, Derrick BE (2016) Long-term potentiation at temporoammonic path-CA1 synapses in freely moving rats. Front Neural Circuits 10:2

    PubMed  PubMed Central  Google Scholar 

  • Gugustea R, Tamming RJ, Martin-Kenny N, Bérubé N, Leung LS (2019) Effect of ATRX inactivation on hippocampal synaptic plasticity in mice. Hippocampus. https://doi.org/10.1002/hipo.23174

    Article  PubMed  Google Scholar 

  • Hajos N, Mody I (1997) Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. J Neurosci 17:8427–8442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hauer BE, Pagliardini S, Dickson CT (2019) The reuniens nucleus of the thalamus has an essential role in coordinating slow-wave activity between neocortex and hippocampus. ENEURO.0365-19.2019. https://doi.org/10.1523/ENEURO.0365-19.2019

    Article  Google Scholar 

  • Herkenham M (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol 177:589–609

    CAS  PubMed  Google Scholar 

  • Herreras O, Solis JM, del Rio M, Lerma J (1987) Characteristics of activation through the hippocampal trisynaptic pathway in the unanaesthetized rat. Brain Res 413:75–86

    CAS  PubMed  Google Scholar 

  • Hutchison RM, Chidiac P, Leung LS (2009) Hippocampal long-term potentiation is enhanced in urethane-anesthetized RGS2 knockout mice. Hippocampus 19:687–691

    PubMed  Google Scholar 

  • Ito HT, Zhang S-J, Witter MP, Moser EI, Moser MB (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522:50–55

    CAS  PubMed  Google Scholar 

  • Jefferys JGR, Traub RD, Whittington MA (1996) Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci 19:202–208

    CAS  PubMed  Google Scholar 

  • Kasyanov AM, Maximov VV, Byzov AL, Berretta N, Sokolov MV, Gasparini S, Cherubini E, Reymann KG, Voronin LL (2000) Differences in amplitude-voltage relations between minimal and composite mossy fibre responses of rat CA3 hippocampal neurons support the existence of intrasynaptic ephaptic feedback in large synapses. Neuroscience 101:323–336

    CAS  PubMed  Google Scholar 

  • Kay LM, Freeman WJ (1998) Bidirectional processing in the olfactory-limbic axis during olfactory behavior. Behav Neurosci 112:541–553

    CAS  PubMed  Google Scholar 

  • Klausberger T (2009) GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. Eur J Neurosci 30:947–957

    PubMed  Google Scholar 

  • Lasztoczi B, Klausberger T (2014) Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 81:1126–1139

    CAS  PubMed  Google Scholar 

  • Lasztoczi B, Klausberger T (2017) Distinct gamma oscillations in the distal dendritic fields of the dentate gyrus and the CA1 area of mouse hippocampus. Brain Struct Funct 222:3355–3365

    PubMed  PubMed Central  Google Scholar 

  • Law C, Leung LS (2018) Long-term potentiation and excitability in the hippocampus are modulated differently by theta rhythm. ENEURO 2018 5(6):1–25. https://doi.org/10.1523/ENEURO.0236-18.2018

    Article  Google Scholar 

  • Leung LS (1982) Nonlinear feedback model of neuronal populations in the hippocampal CA1 region. J Neurophysiol 47:845–868

    CAS  PubMed  Google Scholar 

  • Leung LS (2010) Field potential generation and current source density analysis. In: Vertes RP, Stackman RW (eds) Electrophysiological recording techniques, 2nd edn. Humana, Clifton, pp 1–2615

    Google Scholar 

  • Leung LS, Fu X-W (1994) Factors affecting paired-pulse facilitation in CA1 neurons in vitro. Brain Res 650:75–84

    CAS  PubMed  Google Scholar 

  • Leung LS, Lopes da Silva FH, Wadman WJ (1982) Spectral characteristics of the hippocampal EEG in the freely moving rat. Electroenceph Clin Neurophysiol 54:203–219

    CAS  PubMed  Google Scholar 

  • Leung LS, Peloquin P (2010) Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells. Cereb Cortex 20:1865–1877

    PubMed  Google Scholar 

  • Leung LS, Peloquin P, Canning KJ (2008) Paired-pulse depression of excitatory postsynaptic current sinks in hippocampal CA1 in vivo. Hippocampus 18:1008–1020

    CAS  PubMed  Google Scholar 

  • Leung LS, Roth L, Canning KJ (1995) Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current source-density study. J Neurophysiol 73:2392–2403

    CAS  PubMed  Google Scholar 

  • Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245

    CAS  PubMed  Google Scholar 

  • Lisman JE, Jensen O (2013) The theta-gamma neural code. Neuron 77:1002–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Maruyama R, Nagae T, Inoue M, Aonishi T, Miyakawa H (2015) Weak sinusoidal electric fields entrain spontaneous Ca transients in the dendritic tufts of CA1 pyramidal cells in rat hippocampal slice preparations. PLoS ONE 10(3):e0122263. https://doi.org/10.1371/journal.pone.0122263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70:1451–1459

    CAS  PubMed  Google Scholar 

  • Mann EO, Radcliffe CA, Paulsen O (2005) Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. J Physiol (Lond) 562:55–63

    CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Ann Rev Neurosci 23:649–711

    CAS  PubMed  Google Scholar 

  • McKenna JT, Vertes RP (2004) Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115–142

    PubMed  Google Scholar 

  • Morales GJ, Ramcharan EJ, Sundararaman N, Morgera SD, Vertes RP (2007) Analysis of the actions of nucleus reuniens and the entorhinal cortex on EEG and evoked population behaviour of the hippocampus. Conf Proc IEEE Eng Med Biol Soc 2007:2480–2484

    Google Scholar 

  • Nowak LG, Bullier J (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. Exp Brain Res 118:477–488

    CAS  PubMed  Google Scholar 

  • Price CJ, Scott R, Rusakov DA, Capogna M (2008) GABAB receptor modulation of feedforward inhibition through hippocampal neurogliaform cells. J Neurosci 28:6974–6982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rattay F, Paredes LP, Leao RN (2012) Strength-duration relationship for intra-versus extracellular stimulation with microelectrodes. Neuroscience 214:1–13

    CAS  PubMed  Google Scholar 

  • Remondes M, Schuman EM (2002) Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature 416:736–740

    CAS  PubMed  Google Scholar 

  • Remondes M, Schuman EM (2003) Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse. Learn Mem 10:247–252

    PubMed  PubMed Central  Google Scholar 

  • Remondes M, Schuman EM (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of long-term memory. Nature 431:699–703

    CAS  PubMed  Google Scholar 

  • Schulz PE, Cook EP, Johnston D (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14:5325–5337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sybirska E, Davachi L, Goldman-Rakic PS (2000) Prominence of direct entorhinal-CA1 pathway activation in sensorimotor and cognitive tasks revealed by 2-DG functional mapping in nonhuman primate. J Neurosci 20:5827–5834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas MJ, Watabe AM, Moody TD, Makhinson M, O’Dell TJ (1998) Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J Neurosci 18:7118–7126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varela C, Kumar S, Yang JY, Wilson MA (2014) Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 219:911–929

    CAS  PubMed  Google Scholar 

  • Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20

    CAS  PubMed  Google Scholar 

  • Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768–796

    PubMed  Google Scholar 

  • Wang JH, Kelly PT (1997) Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. J Neurophysiol 78:2707–2716

    CAS  PubMed  Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AHM (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–254

    CAS  PubMed  Google Scholar 

  • Wouterlood FG (1991) Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. anterograde PHA-L tracing combined with retrograde fluorescent tracing and intracellular injection with lucifer yellow in the rat. Eur J Neurosci 3:641–647

    PubMed  Google Scholar 

  • Wouterlood FG, Saldana E, Witter MP (1990) Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris leucoagglutinin. J Comp Neurol 296:179–203

    CAS  PubMed  Google Scholar 

  • Wu LG, Saggau P (1994) Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. J Neurosci 14:645–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Südhof TC (2013) A neural circuit for memory specificty and generalization. Science (80-) 339:1290–1295. https://doi.org/10.1016/j.biotechadv.2011.08.021

    Article  CAS  Google Scholar 

  • Yanagihara M, Niimi K, Ono K (1987) Thalamic projections to the hippocampal and entorhinal areas in the cat. J Comp Neurol 266:122–141

    CAS  PubMed  Google Scholar 

  • Yeckel MF, Berger TW (1990) Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. PNAS 87:5832–5836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeckel MF, Berger TW (1998) Spatial distribution of potentiated synapses in hippocampus: dependence on cellular mechanisms and network properties. J Neurosci 18:438–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Ann Rev Physiol 64:355–405

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the laboratory of Vania and Marco Prado for the supply of mice, and L. Chiu for technical support.

Funding

Funded by operating Grants from the Canadian Natural Sciences and Engineering Research Council (1037-2013) and Canadian Institutes of Health Research (CIHR) MOP-15685 (to LSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stan Leung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Approved by Western University Animal Care Committee, Animal Use Protocol 2010-261.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, T., Gugustea, R. & Leung, L.S. Long-term potentiation of the nucleus reuniens and entorhinal cortex to CA1 distal dendritic synapses in mice. Brain Struct Funct 225, 1817–1838 (2020). https://doi.org/10.1007/s00429-020-02095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02095-6

Keywords

Navigation