Skip to main content
Log in

Association of γ-aminobutyric acid and glutamate/glutamine in the lateral prefrontal cortex with patterns of intrinsic functional connectivity in adults

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

This study examined how levels of neurotransmitters in the lateral prefrontal cortex (LPFC), a region underlying higher-order cognition, are related to the brain’s intrinsic functional organization. Using magnetic resonance spectroscopy (MRS), GABA+ and Glx (glutamate + glutamine) levels in the left dorsal (DLPFC) and left ventral (VLPFC) lateral prefrontal cortex were obtained in a sample of 64 female adults (mean age = 48.5). We measured intrinsic connectivity via resting-state fMRI in three ways: (a) via seed-based connectivity for each of the two spectroscopy voxels; (b) via the spatial configurations of 17 intrinsic networks defined by a well-known template; and (c) via examination of the temporal inter-relationships between these intrinsic networks. The results showed that different neurotransmitter indexes (Glx-specific, GABA+-specific, Glx-GABA+ average and Glx-GABA+ ratio) were associated with distinct patterns of intrinsic connectivity. Neurotransmitter levels in the left LPFC are mainly associated with connectivity of right hemisphere prefrontal (e.g., DLPFC) or striatal (e.g., putamen) regions, two areas of the brain connected to LPFC via large white matter tracts. While the directions of these associations were mixed, in most cases, higher Glx levels are related to reduced connectivity. Prefrontal neurotransmitter levels are also associated with the degree of connectivity between non-prefrontal regions. These results suggest robust relationships between the brain’s intrinsic functional organization and local neurotransmitters in the LPFC which may be constrained by white matter neuroanatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonenko D, Schubert F, Bohm F, Ittermann B, Aydin S, Hayek D, Grittner U, Flöel A (2017) tDCS-induced modulation of GABA levels and resting-state functional connectivity in older adults. J Neurosci 37:4065–4073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    CAS  PubMed  Google Scholar 

  • Badre D, Wagner AD (2007) Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45:2883–2901

    PubMed  Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    CAS  PubMed  Google Scholar 

  • Banich MT (1998) The missing link: the role of interhemispheric interaction in attentional processing. Brain Cogn 36:128–157

    CAS  PubMed  Google Scholar 

  • Banich MT (2009) Executive function: the search for an integrated account. Curr Dir Psychol Sci 18:89–94

    Google Scholar 

  • Barbas H, Hilgetag CC, Saha S, Dermon CR, Suski JL (2005) Parallel organization of contralateral and ipsilateral prefrontal cortical projections in the rhesus monkey. BMC Neurosci 6:32

    PubMed  PubMed Central  Google Scholar 

  • De Benedictis A, Petit L, Descoteaux M, Marras CE, Barbareschi M, Corsini F, Dallabona M, Chioffi F, Sarubbo S (2016) New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography. Hum Brain Mapp 37:4718–4735

    PubMed  PubMed Central  Google Scholar 

  • Bleich-Cohen M, Sharon H, Weizman R, Poyurovsky M, Faragian S, Hendler T (2012) Diminished language lateralization in schizophrenia corresponds to impaired inter-hemispheric functional connectivity. Schizophr Res 134:131–136

    PubMed  Google Scholar 

  • Bloom JS, Hynd GW (2005) The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev 15:59–71

    PubMed  Google Scholar 

  • Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imaging 18:32–42

    CAS  PubMed  Google Scholar 

  • Buzsáki G, Kaila K, Raichle M (2007) Inhibition and Brain Work. Neuron 56:771–783

    PubMed  PubMed Central  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR (1998) Callosal terminals in the rat prefrontal cortex: synaptic targets and association with GABA-immunoreactive structures. Synapse 29:193–205

    CAS  PubMed  Google Scholar 

  • Chang X, Collin G, Mandl RCW, Cahn W, Kahn RS (2019) Interhemispheric connectivity and hemispheric specialization in schizophrenia patients and their unaffected siblings. NeuroImage Clin 21:101656

    PubMed  PubMed Central  Google Scholar 

  • Cole Michael W, Bassett Danielle S, Power Jonathan D, Braver Todd S, Petersen Steven E (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conti F, Manzoni T (1994) The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behav Brain Res 64:37–53

    CAS  PubMed  Google Scholar 

  • Deco G, Jirsa VK, McIntosh AR (2010) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12:43

    Google Scholar 

  • Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Edden RA, Onofrj M, Ferretti A, Bonanni L (2017) GABA content within medial prefrontal cortex predicts the variability of fronto-limbic effective connectivity. Brain Struct Funct 222:3217–3229

    CAS  PubMed  Google Scholar 

  • Donahue MJ, Near J, Blicher JU, Jezzard P (2010) Baseline GABA concentration and fMRI response. NeuroImage 53:392–398

    CAS  PubMed  Google Scholar 

  • Donald CG, Joseph TC (2001) The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158:1367–1377

    Google Scholar 

  • Douglas RJ, Martin KAC (2004) Neuronal circuits of the neocortex. Annu Rev Neurosci 27:419–451

    CAS  PubMed  Google Scholar 

  • Duncan NW, Wiebking C, Tiret B, Marjańska M, Hayes DJ, Lyttleton O, Doyon J, Northoff G (2013) Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS ONE 8:e60312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan NW, Wiebking C, Northoff G (2014) Associations of regional GABA and glutamate with intrinsic and extrinsic neural activity in humans—a review of multimodal imaging studies. Neurosci Biobehav Rev 47:36–52

    CAS  PubMed  Google Scholar 

  • Edden RA, Puts NA, Harris AD, Barker PB, Evans CJ (2014) Gannet: a batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra. J Magn Reson Imaging 40:1445–1452

    PubMed  Google Scholar 

  • Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci 113:7900–7905

    CAS  PubMed  Google Scholar 

  • Fadiga L, Craighero L, D’Ausilio A (2009) Broca's area in language, action, and music. Ann N Y Acad Sci 1169:448–458

    PubMed  Google Scholar 

  • Fame RM, MacDonald JL, Macklis JD (2011) Development, specification, and diversity of callosal projection neurons. Trends Neurosci 34:41–50

    CAS  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700

    CAS  PubMed  Google Scholar 

  • Grodzinsky Y, Santi A (2008) The battle for Broca’s region. Trends Cogn Sci 12:474–480

    PubMed  Google Scholar 

  • Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, Kramer JH, Seeley WW (2012) One-year test–retest reliability of intrinsic connectivity network fMRI in older adults. NeuroImage 61:1471–1483

    PubMed  PubMed Central  Google Scholar 

  • Hankin BL, Young JF, Abela JR, Smolen A, Jenness JL, Gulley LD, Technow JR, Gottlieb AB, Cohen JR, Oppenheimer CW (2015) Depression from childhood into late adolescence: influence of gender, development, genetic susceptibility, and peer stress. J Abnorm Psychol 124:803

    PubMed  PubMed Central  Google Scholar 

  • Harris AD, Puts N, Edden RAE (2015) Tissue correction for GABA-edited MRS: considerations of voxel composition, tissue segmentation, and tissue relaxations. J Magn Reson Imaging 42:1431–1440

    PubMed  PubMed Central  Google Scholar 

  • Hayasaka S, Nichols TE (2003) Validating cluster size inference: random field and permutation methods. NeuroImage 20:2343–2356

    PubMed  Google Scholar 

  • Horn D, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut K, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:33

    PubMed  PubMed Central  Google Scholar 

  • Iacoboni M, Zaidel E (2003) The parallel brain : the cognitive neuroscience of the corpus callosum. A Bradford Book, Cambridge

    Google Scholar 

  • Jacobson S, Trojanowski JQ (1974) The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res 74:149–155

    CAS  PubMed  Google Scholar 

  • Jarbo K, Verstynen T, Schneider W (2012) In vivo quantification of global connectivity in the human corpus callosum. NeuroImage 59:1988–1996

    PubMed  Google Scholar 

  • Kalivas PW, LaLumiere RT, Knackstedt L, Shen H (2009) Glutamate transmission in addiction. Neuropharmacology 56:169–173

    CAS  PubMed  Google Scholar 

  • Kapogiannis D, Reiter DA, Willette AA, Mattson MP (2013) Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. NeuroImage 64:112–119

    CAS  PubMed  Google Scholar 

  • Kelly C, Zuo X-N, Gotimer K, Cox CL, Lynch L, Brock D, Imperati D, Garavan H, Rotrosen J, Castellanos FX, Milham MP (2011) Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiat 69:684–692

    CAS  PubMed  Google Scholar 

  • Kenny PJ, Markou A (2004) The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol Sci 25:265–272

    CAS  PubMed  Google Scholar 

  • van der Knaap LJ, van der Ham IJM (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223:211–221

    PubMed  Google Scholar 

  • Lianne S, Goudriaan AE, Johan M, Wim B, Veltman DJ (2012) The association between cingulate cortex glutamate concentration and delay discounting is mediated by resting state functional connectivity. Brain Behav 2:553–562

    Google Scholar 

  • Lieberman MD, Cunningham WA (2009) Type I and type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci 4:423–428

    PubMed  PubMed Central  Google Scholar 

  • Lin H-C, Wang P-W, Wu H-C, Ko C-H, Yang Y-H, Yen C-F (2018) Altered gray matter volume and disrupted functional connectivity of dorsolateral prefrontal cortex in men with heroin dependence. Psychiatry Clin Neurosci 72:435–444

    PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150

    CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496

    CAS  PubMed  Google Scholar 

  • Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S, Doyon J, Benali H (2006) Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 32:228–237

    Google Scholar 

  • Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    CAS  PubMed  Google Scholar 

  • Moghaddam B, Javitt D (2012) From Revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacol 37:4–15

    CAS  Google Scholar 

  • Mwansisya TE, Wang Z, Tao H, Zhang H, Hu A, Guo S, Liu Z (2013) The diminished interhemispheric connectivity correlates with negative symptoms and cognitive impairment in first-episode schizophrenia. Schizophr Res 150:144–150

    PubMed  Google Scholar 

  • Nichols TE (2012) Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage 62:811–815

    PubMed  Google Scholar 

  • Nickerson LD, Smith SM, Öngür D, Beckmann CF (2017) Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Front Neurosci-Switz 11:115

    Google Scholar 

  • Petroff OAC (2002) Book review: GABA and glutamate in the human brain. The Neuroscientist 8:562–573

    CAS  PubMed  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    CAS  PubMed  Google Scholar 

  • Qiu Y-w, Jiang G-h, Ma X-f, Su H-H, Lv X-f, Zhuo F-z (2017) Aberrant interhemispheric functional and structural connectivity in heroin-dependent individuals. Addict Biol 22:1057–1067

    CAS  PubMed  Google Scholar 

  • Reubi JC, Van Der Berg C, Cuénod M (1978) Glutamine as precursor for the GABA and glutamate trasmitter pools. Neurosci Lett 10:171–174

    CAS  PubMed  Google Scholar 

  • Rock C, Zurita H, Lebby S, Wilson CJ, Aj A (2017) Cortical circuits of callosal GABAergic neurons. Cereb Cortex 28:1154–1167

    Google Scholar 

  • Roland JL, Snyder AZ, Hacker CD, Mitra A, Shimony JS, Limbrick DD, Raichle ME, Smyth MD, Leuthardt EC (2017) On the role of the corpus callosum in interhemispheric functional connectivity in humans. Proc Natl Acad Sci 114:13278–13283

    CAS  PubMed  Google Scholar 

  • Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90:449–468

    PubMed  PubMed Central  Google Scholar 

  • Schulte T, Müller-Oehring EM (2010) Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychol Rev 20:174–190

    PubMed  PubMed Central  Google Scholar 

  • Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB, Petkova E, Castellanos FX, Milham MP (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19:2209–2229

    PubMed  PubMed Central  Google Scholar 

  • Shukla DK, Wijtenburg SA, Chen H, Chiappelli JJ, Kochunov P, Hong LE, Rowland LM (2019) Anterior cingulate glutamate and GABA associations on functional connectivity in schizophrenia. Schizophr Bull 45(3):647–658. https://doi.org/10.1093/schbul/sby075

    Article  PubMed  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci 106:13040–13045

    CAS  PubMed  Google Scholar 

  • Smith SM, Nichols TE, Vidaurre D, Winkler AM, Behrens TEJ, Glasser MF, Ugurbil K, Barch DM, Van Essen DC, Miller KL (2015) A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci 18:1565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder HR, Banich MT, Munakata Y (2014) All competition is not alike: neural mechanisms for resolving underdetermined and prepotent competition. J Cognitive Neurosci 26:2608–2623

    Google Scholar 

  • Snyder HR, Friedman NP, Hankin BL (2019) Transdiagnostic mechanisms of psychopathology in youth: executive functions, dependent stress, and rumination. Cogn Ther Res 43:834–851

    Google Scholar 

  • Stagg CJ, Bachtiar V, Amadi U, Gudberg CA, Ilie AS, Sampaio-Baptista C, O’Shea J, Woolrich M, Smith SM, Filippini N, Near J, Johansen-Berg H (2014) Local GABA concentration is related to network-level resting functional connectivity. eLife 3:e01465

    PubMed  PubMed Central  Google Scholar 

  • Tanji J, Hoshi E (2008) Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev 88:37–57

    PubMed  Google Scholar 

  • Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. NeuroImage 92:381–397

    PubMed  PubMed Central  Google Scholar 

  • Woo C-W, Krishnan A, Wager TD (2014) Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. NeuroImage 91:412–419

    PubMed  PubMed Central  Google Scholar 

  • Yarkoni T (2009) Big correlations in little studies: inflated fMRI correlations reflect low statistical power—commentary on Vul et al. (2009). Perspect Psychol Sci 4:294–298

    PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    PubMed  Google Scholar 

  • Yu D, Yuan K, Bi Y, Luo L, Zhai J, Liu B, Li Y, Cheng J, Guan Y, Xue T, Bu L, Su S, Ma Y, Qin W, Tian J, Lu X (2018) Altered interhemispheric resting-state functional connectivity in young male smokers. Addict Biol 23:772–780

    PubMed  Google Scholar 

  • Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this study was supported by NIMH Grant R01 105501 to MTB and BLK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Marie T. Banich.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Smolker, H.R., Brown, M.S. et al. Association of γ-aminobutyric acid and glutamate/glutamine in the lateral prefrontal cortex with patterns of intrinsic functional connectivity in adults. Brain Struct Funct 225, 1903–1919 (2020). https://doi.org/10.1007/s00429-020-02084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02084-9

Keywords

Navigation