Skip to main content

Advertisement

Log in

Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The limbic system encompasses a collection of brain areas primarily involved in higher cognitive and emotional processing. Altered function in the limbic circuitry may play a major role in various psychiatric disorders. This study aims to provide a high-quality ex vivo diffusion-weighted MRI (DWI) tractographic overview of the Göttingen minipig limbic system pathways, which are currently not well described. This may facilitate future translational large animal studies. The study used previously obtained post-mortem DWI scans in 3 female Göttingen minipigs aging 11–15 months. The tractography performed on the DWI data set was made using a probabilistic algorithm, and regions of interest (ROIs) were defined in accordance with a histological atlas. The investigated pathways included the fornix, mammillothalamic tract, stria terminalis, stria medullaris, habenulo-interpeduncular tract, and cingulum. All the investigated limbic connections could be visualized with a high detail yielding a comprehensive three-dimensional overview, which was emphasized by the inclusion of video material. The minipig limbic system pathways displayed using tractography closely resembled what was previously described in both human studies and neuronal tracing studies from other mammalian species. We encountered well-known inherent methodological challenges of tractography, e.g., partial volume effects and complex white matter regions, which may have contributed to derouted false-positive streamlines and the failure to visualize some of the minor limbic pathway ramifications. This underlines the importance of preexisting anatomical knowledge. Conclusively, we have, for the first time, provided an overview and substantial insight of the Göttingen minipig limbic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to acknowledge the previously given funding from the Novo Nordisk Foundation (Grant no. NNF15OC00015680), the Jascha Foundation (Grant no. 5559), “Fonden for Neurologisk Forskning”, and “Simon Fougner Hartmanns Familiefond” to permit us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Bech.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were approved by and in accordance with the ethical standards of the Danish National Council of Animal Research Ethics (protocol number 2015-15-0201-00965).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bech, J., Orlowski, D., Glud, A.N. et al. Ex vivo diffusion-weighted MRI tractography of the Göttingen minipig limbic system. Brain Struct Funct 225, 1055–1071 (2020). https://doi.org/10.1007/s00429-020-02058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-020-02058-x

Keywords

Navigation