Abstract
Mental health problems often emerge in adolescence and are associated with reduced gray matter thickness or volume in the prefrontal cortex (PFC) and limbic system and reduced fractional anisotropy (FA) and increased mean diffusivity (MD) of white matter linking these regions. However, few studies have investigated whether internalizing and externalizing behavior are associated with brain structure in children and adolescents without mental health disorders, which is important for understanding the progression of symptoms. 67 T1-weighted and diffusion tensor imaging datasets were obtained from 48 typically developing participants aged 6–16 years (37M/30F; 19 participants had two visits). Volume was calculated in the prefrontal and limbic structures, and diffusion parameters were assessed in limbic white matter. Linear mixed effects models were used to compute associations between brain structure and internalizing and externalizing behavior, assessed using the Behavioral Assessment System for Children (BASC-2) Parent Rating Scale. Internalizing behavior was positively associated with MD of the bilateral cingulum. Gender interactions were found in the cingulum, with stronger positive relationships between MD and internalizing behavior in females. Externalizing behavior was negatively associated with FA of the left cingulum, and the left uncinate fasciculus showed an age–behavior interaction. No relationships between behavior and brain volumes survived multiple comparison correction. These results show altered limbic white matter FA and MD related to sub-clinical internalizing and externalizing behavior and further our understanding of neurological markers that may underlie risk for future mental health disorders.
Similar content being viewed by others
References
Abdul-Rahman MF, Qiu A, Sim K (2011) Regionally specific white matter disruptions of fornix and cingulum in schizophrenia. PLoS One. https://doi.org/10.1371/journal.pone.0018652
Ahmed SP, Bittencourt-Hewitt A, Sebastian CL (2015) Neurocognitive bases of emotion regulation development in adolescence. Dev Cogn Neurosci 15:11–25. https://doi.org/10.1016/j.dcn.2015.07.006
Albaugh MD, Ducharme S, Karama S, Watts R, Lewis JD, Orr C et al (2017) Anxious/depressed symptoms are related to microstructural maturation of white matter in typically developing youths. Dev Psychopathol 29(3):751–758. https://doi.org/10.1017/S0954579416000444
Ali OM, Vandermeer MRJ, Sheikh HI, Joanisse MF, Hayden EP (2019) Girls’ internalizing symptoms and white matter tracts in Cortico-Limbic circuitry. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2018.101650
Ameis SH, Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Lepage C et al (2014) Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children. Biol Psychiat 75(1):65–72. https://doi.org/10.1016/j.biopsych.2013.06.008
Asato MR, Terwilliger R, Woo J, Luna B (2010) White matter development in adolescence: a DTI study. Cereb Cortex 20(9):2122–2131. https://doi.org/10.1093/cercor/bhp282
Barnhill GP, Hagiwara T, Myles BS, Simpson RL, Brick ML, Griswold DE (2000) Parent, teacher, and self-report of problem and adaptive behaviors in children and adolescents with Asperger syndrome. Assess Effect Interv 25(2):147–167. https://doi.org/10.1177/073724770002500205
Basser PJ, Pierpoali C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson (San Diego, Calif. 1997) 213(2):560–570. https://doi.org/10.1016/j.jmr.2011.09.022
Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455. https://doi.org/10.1002/nbm.782
Boes AD, Tranel D, Anderson SW, Nopoulos P (2008) Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behav Neurosci 122(3):677–684. https://doi.org/10.1037/0735-7044.122.3.677
Bubb EJ, Metzler-Baddeley C, Aggleton JP (2018) The cingulum bundle: anatomy, function, and dysfunction. Neurosci Biobehav Rev 92(May):104–127. https://doi.org/10.1016/j.neubiorev.2018.05.008
Caldwell JZK, Armstrong JM, Hanson JL, Sutterer MJ, Stodola DE, Koenigs M et al (2015) Preschool externalizing behavior predicts gender-specific variation in adolescent neural structure. PLoS One 10(2):1–17. https://doi.org/10.1371/journal.pone.0117453
Casey BJ, Getz S, Galvan A (2008) The adolescent brain. Dev Rev 28(1):62–77. https://doi.org/10.1016/j.dr.2007.08.003
Castellanos FX, Giedd JN, Berquin PC, Walter JM, Sharp W, Tran T et al (2001) Quantitative brain magnetic resonance imaging in girls with attention- deficit/hyperactivity disorder. Arch Gen Psychiatry 58(3):289–295
Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194. https://doi.org/10.1006/nimg.1998.0395
Decety J, Yoder KJ, Lahey BB (2015) Sex differences in abnormal white matter development associated with conduct disorder in children. Psychiatry Res Neuroimaging 233(2):269–277. https://doi.org/10.1016/j.pscychresns.2015.07.009
Doyle A, Ostrander R, Skare S, Crosby R, August G (1997) Convergent and criterion-related validity of the behavior assessment system for children-parent rating scale. J Clin Child Psychol 26(3):276–284. https://doi.org/10.1207/s15374424jccp2603
Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213(1–2):93–118. https://doi.org/10.1007/s00429-008-0189-x
Ducharme S, Hudziak JJ, Botteron KN, Ganjavi H, Lepage C, Collins DL et al (2011) Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children. Biol Psychiat 70(3):283–290. https://doi.org/10.1016/j.biopsych.2011.03.015
Ducharme S, Albaugh MD, Hudziak JJ, Botteron KN, Nguyen TV, Truong C et al (2014) Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb Cortex 24(11):2941–2950. https://doi.org/10.1093/cercor/bht151
Eaton NR, Keyes KM, Krueger RF, Balsis S, Andrew E, Markon KE et al (2012) An invariant dimensional liability model of gender differences in mental disorder prevalence: evidence from a national sample. J Abnorm Psychol 121(1):282–288. https://doi.org/10.1037/a0024780.An
Fanti KA, Henrich CC (2010) Trajectories of pure and co-occurring internalizing and externalizing problems from age 2 to age 12: findings from the national institute of child health and human development study of early child care. Dev Psychol 46(5):1159–1175. https://doi.org/10.1037/a0020659
Filipek PA, Semrud-Clikeman M, Steingrad R, Kennedy D, Biederman J (1997) Volumetric MRI analysis: comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology 48(3):589–601
Fischl B (2012) FreeSurfer. NeuroImage 62(2):774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
Gau SS, Tseng WL, Tseng WYI, Wu YH, Lo YC (2015) Association between microstructural integrity of frontostriatal tracts and school functioning: ADHD symptoms and executive function as mediators. Psychol Med 45(3):529–543. https://doi.org/10.1017/S0033291714001664
Geeraert BL, Lebel RM, Mah AC, Deoni SC, Alsop DC, Varma G, Lebel C (2018) A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and diffusion tensor imaging measures in healthy children. NeuroImage 182:343–350. https://doi.org/10.1016/j.neuroimage.2017.09.019
Genc S, Seal ML, Dhollander T, Malpas CB, Hazell P, Silk TJ (2017) White matter alterations at pubertal onset. NeuroImage 156(May):286–292. https://doi.org/10.1016/j.neuroimage.2017.05.017
Giedd JN, Vaituzis AC, Hamburger SD, Lange N, Rajapakse JC, Kaysen D et al (1996) Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J Comp Neurol 366(2):223–230. https://doi.org/10.1002/(SICI)1096-9861(19960304)366:2%3c223:AID-CNE3%3e3.0.CO;2-7
Gilliom M, Shaw DS (2004) Codevelopment of externalizing and internalizing problems in early childhood. Dev Psychopathol 16(2):313–333. https://doi.org/10.1017/S0954579404044530
Goodwin R, Fergusson D, Horwood J (2004) Early anxious/withdrawn behaviours predict later internalising disorders. J Child Psychol Psychiatry 45(4):874–883. https://doi.org/10.1111/j.1469-7610.2004.00279.x
Heng S, Song AW, Sim K (2010) White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm 117(5):639–654. https://doi.org/10.1007/s00702-010-0368-9
Hofstra MB, Van Der Ende J, Verhulst FC (2002) Child and adolescent problems predict DSM-IV disorders in adulthood: a 14-year follow-up of a Dutch epidemiological sample. J Am Acad Child Adolesc Psychiatry 41(2):182–189. https://doi.org/10.1097/00004583-200202000-00012
Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ et al (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4(4):310–319. https://doi.org/10.1016/S2215-0366(17)30049-4
Irfanoglu MO, Walker L, Sarlls J, Marenco S, Pierpaoli C (2012) Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage 61(1):275–288. https://doi.org/10.1016/j.neuroimage.2012.02.054
Jeurissen B, Leemans A, Jones DK, Tournier JD, Sijbers J (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32(3):461–479. https://doi.org/10.1002/hbm.21032
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593–602. https://doi.org/10.1001/archpsyc.62.6.593
Kolko DJ, Kazdin AE (1993) Emotional/behavioral problems in clinic and nonclinic children: correspondence among child, parent and teacher reports. J Child Psychol Psychiatry 34(6):991–1006. https://doi.org/10.1111/j.1469-7610.1993.tb01103.x
Koolschijn PCMP, van Ijzendoorn MH, Bakermans-Kranenburg MJ, Crone EA (2013) Hippocampal volume and internalizing behavior problems in adolescence. Eur Neuropsychopharmacol 23(7):622–628. https://doi.org/10.1016/j.euroneuro.2012.07.001
Larroza A, Moratal D, D’ocon Alcaniz V, Arana E (2014) Tractography of the uncinate fasciculus and the posterior cingulate fasciculus in patients with mild cognitive impairment and Alzheimer disease. Neurologia (Barcelona, Spain) 29(1):11–20. https://doi.org/10.1016/j.nrl.2013.02.002
Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937–10947. https://doi.org/10.1523/JNEUROSCI.5302-10.2011
Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055. https://doi.org/10.1016/j.neuroimage.2007.12.053
Lee FS, Heimer H, Giedd JN, Lein ES, Sestan N, Weinberger DR, Casey BJ (2014) Adolescent mental health—opportunity and obligation: emerging neuroscience offers hope for treatments. Science 346(6209):547–549. https://doi.org/10.1097/OGX.0000000000000256.Prenatal
Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61(6):1336–1349. https://doi.org/10.1002/mrm.21890
Leemans A, Jeurissen B, Sijbers J, Jones D (2009) ExploreDTI : a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of International Society of Magnetic Resonance in Medicine, 3537, Hawaii, USA
Lichenstein SD, Verstynen T, Forbes EE (2016) Adolescent brain development and depression: a case for the importance of connectivity of the anterior cingulate cortex. Neurosci Biobehav Rev 70:271–287. https://doi.org/10.1016/j.neubiorev.2016.07.024
Merikangas KR, Nakamura EF, Kessler RC (2009) Epidemiology of mental disorders in children and adolescents. Dialogues Clin Neurosci 11(1):7–20. https://doi.org/10.1001/jamapediatrics.2013.192
Mincic AM (2015) Neuroanatomical correlates of negative emotionality-related traits: a systematic review and meta-analysis. Neuropsychologia 77:97–118. https://doi.org/10.1016/j.neuropsychologia.2015.08.007
Moffitt T (1993) Adolescence-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychol Rev 100(4):674–701
Montigny C, Castellanos-Ryan N, Whelan R, Banaschewski T, Barker GJ, Büche C et al (2013) A phenotypic structure and neural correlates of compulsive behaviors in adolescents. PLoS One 8(11):1–13. https://doi.org/10.1371/journal.pone.0080151
Olson IR, Von Der Heide RJ, Alm KH, Vyas G (2015) Development of the uncinate fasciculus: implications for theory and developmental disorders. Dev Cogn Neurosci 14:50–61. https://doi.org/10.1016/j.dcn.2015.06.003
Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9(DeceMBeR):947–958
Perrone D, Aelterman J, Pižurica A, Jeurissen B, Philips W, Leemans A (2015) The effect of Gibbs ringing artifacts on measures derived from diffusion MRI. NeuroImage 120:441–455. https://doi.org/10.1016/j.neuroimage.2015.06.068
Plaisier A, Pieterman K, Lequin MH, Govaert P, Heemskerk AM, Reiss IKM et al (2014) Choice of diffusion tensor estimation approach affects fiber tractography of the fornix in preterm brain. Am J Neuroradiol 35(6):1219–1225. https://doi.org/10.3174/ajnr.A3830
Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35(1):192–216. https://doi.org/10.1038/npp.2009.104
Reynolds CR, Kamphaus RW, Vannest KJ (2011) Behavior assessment system for children (BASC). In: Kreutzer JS, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology. Springer, New York, pp 366–371. https://doi.org/10.1007/978-0-387-79948-3_1524
Smetanin P, Stiff D, Briante C, Adair CE, Ahmad S, and Khan M (2011) The life and economic impact of major mental illnesses in Canada: 2011 to 2041. RiskAnalytica, on behalf of the Mental Health Commission of Canada 2011
Roberts, A, Robbins, T, Weiskrantz, L (1998) The prefrontal cortex: executive and cognitive functions. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198524410.001.0001
Sarkar S, Craig MC, Catani M, Dell’Acqua F, Fahy T, Deeley Q, Murphy DGM (2013) Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychol Med 43(2):401–411. https://doi.org/10.1017/S003329171200116X
Seunarine KK, Clayden JD, Jentschke S, Muñoz M, Cooper JM, Chadwick MJ et al (2016) Sexual dimorphism in white matter developmental trajectories using tract-based spatial statistics. Brain Connect 6(1):37–47. https://doi.org/10.1089/brain.2015.0340
Sexton CE, Mackay CE, Ebmeier KP (2009) A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiat 66(9):814–823. https://doi.org/10.1016/j.biopsych.2009.05.024
Snyder HR, Hankin BL, Sandman CA, Head K, Davis EP (2017) Distinct patterns of reduced prefrontal and limbic gray matter volume in childhood general and internalizing psychopathology. Clin Psychol Sci 5(6):1001–1013. https://doi.org/10.1177/2167702617714563
Tamnes CK, Østby Y, Fjell AM, Westlye T, Due-tønnessen P, Walhovd KB (2010) Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 20:534–548. https://doi.org/10.1093/cercor/bhp118
Tax CMW, Otte WM, Viergever MA, Dijkhuizen RM, Leemans A (2015) REKINDLE: robust extraction of kurtosis INDices with linear estimation. Magn Reson Med 73(2):794–808. https://doi.org/10.1002/mrm.25165
Uematsu A, Matsui M, Tanaka C, Takahashi T, Noguchi K, Suzuki M, Nishijo H (2012) Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS One. https://doi.org/10.1371/journal.pone.0046970
van der Plas EAA, Boes AD, Wemmie JA, Tranel D, Nopoulos P (2010) Amygdala volume correlates positively with fearfulness in normal healthy girls. Soc Cogn Affect Neurosci 5(4):424–431. https://doi.org/10.1093/scan/nsq009
Vaughn M, Riccio C, Hynd G, Hall J (2010) Diagnosing ADHD (predominantly inattentive and combine type subtypes): discriminant validity of the behaviour assessment system for children and the Achenbach parent and teaching rating scales. J Clin Child Psychol 26(4):349–357. https://doi.org/10.1207/s15374424jccp2604
Visser TAW, Ohan JL, Whittle S, Yucel M, Simmons JG, Allen NB (2013) Sex differences in structural brain asymmetry predict overt aggression in early adolescents. Soc Cogn Affect Neurosci 2014(9):553–560. https://doi.org/10.1093/scan/nst013
Vos SB, Tax CMW, Luijten PR, Ourselin S, Leemans A, Froeling M (2017) The importance of correcting for signal drift in diffusion MRI. Magn Reson Med 77(1):285–299. https://doi.org/10.1002/mrm.26124
Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S (2004) Fiber tract–based atlas of human white matter anatomy. Radiology 230(1):77–87. https://doi.org/10.1148/radiol.2301021640
Waller R, Dotterer HL, Murray L, Maxwell AM, Hyde LW (2017) White-matter tract abnormalities and antisocial behavior: a systematic review of diffusion tensor imaging studies across development. NeuroImage Clin 14:201–215. https://doi.org/10.1016/j.nicl.2017.01.014
White T, Nelson M, Lim KO (2008) Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging 19(2):97–106. https://doi.org/10.1097/RMR.0b013e3181809f1e
Yang Y, Raine A (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res Neuroimaging 174(2):81–88. https://doi.org/10.1016/j.pscychresns.2009.03.012
Yap MBH, Whittle S, Yücel M, Sheeber L (2008) Interaction of parenting experiences and brain structure in the prediction of depressive symptoms in adolescents. Arch Gen Psychiatry 65(12):1377–1385
Zahn-Waxler C, Shirtcliff EA, Marceau K (2008) Disorders of childhood and adolescence: gender and psychopathology. Annu Rev Clin Psychol 4:275–305. https://doi.org/10.1146/annurev.clinpsy.3.022806.091358
Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4):1000–1016
Acknowledgements
This work was supported by the Natural Sciences and Engineering Research Council (NSERC) (CL), NSERC CREATE International and Industrial Imaging Training (I3T) Program, Queen Elizabeth II Graduate Scholarship, and Alberta Children’s Hospital Research Institute (ACHRI) Graduate Scholarship (QA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
CL’s spouse is an employee of General Electric Healthcare. The authors report no other biomedical financial interests or potential conflicts of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Calgary Conjoint Health Research Ethics Board [REB13-1346] and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Informed consent
Informed consent and assent were obtained from all guardians and individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Andre, Q.R., Geeraert, B.L. & Lebel, C. Brain structure and internalizing and externalizing behavior in typically developing children and adolescents. Brain Struct Funct 225, 1369–1378 (2020). https://doi.org/10.1007/s00429-019-01973-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00429-019-01973-y