Skip to main content

Advertisement

Log in

Structural brain network of gifted children has a more integrated and versatile topology

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Gifted children learn more rapidly and effectively than others, presumably due to neurophysiological differences that affect efficiency in neuronal communication. Identifying the topological features that support its capabilities is relevant to understanding how the brain structure is related to intelligence. We proposed the analysis of the structural covariance network to assess which organizational patterns are characteristic of gifted children. The graph theory was used to analyse topological properties of structural covariance across a group of gifted children. The analysis was focused on measures of brain network integration, such as, participation coefficient and versatility, which quantifies the strength of specific modular affiliation of each regional node. We found that the gifted group network was more integrated (and less segregated) than the control group network. Brain regional nodes in the gifted group network had higher versatility and participation coefficient, indicating greater inter-modular communication mediated by connector hubs with links to many modules. Connector hubs of the networks of both groups were located mainly in association with neocortical areas (which had thicker cortex), with fewer hubs in primary or secondary neocortical areas (which had thinner cortex), as well as a few connector hubs in limbic cortex and insula. In the group of gifted children, a larger proportion of connector hubs were located in association cortex. In conclusion, gifted children have a more integrated and versatile brain network topology. This is compatible with the global workspace theory and other data linking integrative network topology to cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14(5):322–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28(37):9239–9248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolero MA, Yeo BTT, D’Esposito M (2015) The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1510619112

    Article  PubMed  Google Scholar 

  • Bethlehem RAI, Romero-Garcia R, Mak E, Bullmore ET, Baron-Cohen S (2017) Structural covariance networks in children with autism or ADHD. Cereb Cortex 27(8):4267–4276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binet A, Simon T (1916) The development of intelligence in children (The Binet–Simon Scale). Psychol Sci 11:175

    Google Scholar 

  • Binet A, Simon T (1948) The development of the Binet–Simon Scale, 1905–1908. In: Readings in the history of psychology, pp 412–424

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    CAS  PubMed  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1):1–47

    CAS  PubMed  Google Scholar 

  • Chabris CF (2007) Cognitive and neurobiological mechanisms of the law of general intelligence. In: Integrating the mind: domain general versus domain specific processes in higher cognition, pp 449–491

  • Chevalier N, Kurth S, Doucette MR, Wiseheart M, Deoni SCL, Dean DC et al (2015) Myelination is associated with processing speed in early childhood: preliminary insights. PLoS ONE 10(10):e0139897

    PubMed  PubMed Central  Google Scholar 

  • Colom R, Karama S, Jung RE, Haier RJ (2010) Human intelligence and brain networks. Dialogues Clin Neurosci 12(4):489–501

    PubMed  PubMed Central  Google Scholar 

  • Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D et al (2011) Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry 16(10):996–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70(2):200–227

    CAS  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 3:968–980

    Google Scholar 

  • Evans AC (2013) Networks of anatomical covariance. Neuroimage 80:489–504

    CAS  PubMed  Google Scholar 

  • Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97(20):11050–11055

    CAS  PubMed  Google Scholar 

  • Fornito A, Zalesky A, Bullmore ET (2016) Fundamentals of brain network analysis. Academic Press, San Diego

    Google Scholar 

  • Geake JG (2008) The neurobiology of giftedness. In: Wystąpienie na konferencji 10th Asia-Pacific conference on giftedness, Singapore

  • Ghosh SS, Kakunoori S, Augustinack J, Nieto-Castanon A, Kovelman I, Gaab N et al (2010) Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age. Neuroimage 53(1):85–93. https://doi.org/10.1016/j.neuroimage.2010.05.075

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh S, Bansal R, Xu D, Hao X, Liu J, Peterson BS (2011) Neuroanatomical correlates of intellectual ability across the life span. Dev Cogn Neurosci 1(3):305–312. https://doi.org/10.1016/j.dcn.2011.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536

    PubMed  Google Scholar 

  • Gross MUM (2006) Exceptionally gifted children: long-term outcomes of academic acceleration and nonacceleration. J Educ Gifted 29(4):404–429

    Google Scholar 

  • He Y, Chen Z, Gong G, Evans A (2009) Neuronal networks in Alzheimer’s disease. The Neuroscientist 15(4):333–350

    PubMed  Google Scholar 

  • Irimia A, Van Horn JD (2013) The structural, connectomic and network covariance of the human brain. Neuroimage 66:489–499

    PubMed  Google Scholar 

  • Jung RE, Haier RJ (2007) The Parieto-Frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30(02):135–154

    PubMed  Google Scholar 

  • Karama S, Colom R, Johnson W, Deary IJ, Haier R, Waber DP et al (2011) Cortical thickness correlates of specific cognitive performance accounted for by the general factor of intelligence in healthy children aged 6 to 18. Neuroimage 55(4):1443–1453

    PubMed  PubMed Central  Google Scholar 

  • Khundrakpam BS, Reid A, Brauer J, Carbonell F, Lewis J, Ameis S et al (2013) Developmental changes in organization of structural brain networks. Cereb Cortex 23(9):2072–2085

    PubMed  Google Scholar 

  • Khundrakpam BS, Lewis JD, Reid A, Karama S, Zhao L, Chouinard-Decorte F, Evans AC (2016) Imaging structural covariance in the development of intelligence. Neuroimage 144(Pt A):227–240

    PubMed  Google Scholar 

  • Kim DJ, Davis EP, Sandman CA, Sporns O, O’Donnell BF, Buss C, Hetrick WP (2016) Children’s intellectual ability is associated with structural network integrity. Neuroimage 124:550–556

    PubMed  Google Scholar 

  • Kitzbichler MG, Henson RN, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31(22):8259–8270. https://doi.org/10.1523/JNEUROSCI.0440-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5):e1000395. https://doi.org/10.1371/journal.pcbi.1000395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913

    CAS  PubMed  Google Scholar 

  • Menary K, Collins PF, Porter JN, Muetzel R, Olson EA, Kumar V et al (2013) Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence 41(5):597–606

    PubMed  PubMed Central  Google Scholar 

  • Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200. https://doi.org/10.3389/fnins.2010.00200

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: technical considerations. Am J Neuroradiol 29(5):843–852. https://doi.org/10.3174/ajnr.A1052

    Article  CAS  PubMed  Google Scholar 

  • Naghavi HR, Nyberg L (2005) Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Conscious Cogn 14(2):390–425

    PubMed  Google Scholar 

  • Navas-Sánchez FJ, Alemán-Gómez Y, Sánchez-Gonzalez J, Guzmán-De-Villoria JA, Franco C, Robles O et al (2014) White matter microstructure correlates of mathematical giftedness and intelligence quotient. Hum Brain Mapp 35(6):2619–2631

    PubMed  Google Scholar 

  • Navas-Sánchez FJ, Carmona S, Alemán-Gómez Y, Sánchez-González J, Guzmán-de-Villoria J, Franco C et al (2016) Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents. Hum Brain Mapp 37(5):1893–1902

    PubMed  Google Scholar 

  • Romero-Garcia R, Atienza M, Clemmensen LH, Cantero JL (2012) Effects of network resolution on topological properties of human neocortex. Neuroimage 59(4):3522–3532

    PubMed  Google Scholar 

  • Romero-Garcia R, Whitaker KJ, Váša F, Seidlitz J, Shinn M, Fonagy P et al (2018) Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. Neuroimage 171:256–267

    PubMed  PubMed Central  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    PubMed  Google Scholar 

  • Santamaría P, Arribas D, Pereña J, Seisdedos N (2005) EFAI, Evaluación Factorial de las Aptitudes Intelectuales. Departamento I + D TEA Ediciones, Madrid

    Google Scholar 

  • Schnack HG, van Haren NEM, Brouwer RM, Evans A, Durston S, Boomsma DI et al (2014) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex (New York, N.Y. : 1991) 10:1608–1617

    Google Scholar 

  • Seidlitz J, Váša F, Shinn M, Romero-Garcia R, Whitaker KJ, Vértes PE et al (2018) Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 97(1):231–247

    CAS  PubMed  Google Scholar 

  • Sharda M, Khundrakpam BS, Evans AC, Singh NC (2016) Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct 221(2):1017–1032

    PubMed  Google Scholar 

  • Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ et al (2016) The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 1:21. https://doi.org/10.1016/j.neuron.2016.09.018

    Article  CAS  Google Scholar 

  • Shinn M, Romero-Garcia R, Seidlitz J, Váša F, Vértes PE, Bullmore E (2017) Versatility of nodal affiliation to communities. Sci Rep 7(1):4273

    PubMed  PubMed Central  Google Scholar 

  • van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci Off J Soc Neurosci 29(23):7619–7624

    Google Scholar 

  • van Wijk BCM, Stam CJ, Daffertshofer A (2010) Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE 5(10):e13701. https://doi.org/10.1371/journal.pone.0013701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Váša F, Seidlitz J, Romero-Garcia R, Whitaker KJ, Rosenthal G, Vértes PE et al (2018) Adolescent tuning of association cortex in human structural brain networks. Cereb Cortex (New York, N.Y. : 1991) 28(1):281–294. https://doi.org/10.1093/cercor/bhx249

    Article  Google Scholar 

  • Vértes PE, Rittman T, Whitaker KJ, Romero-Garcia R, Váša F, Kitzbichler MG et al (2016) Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks. Philos Trans R Soc B Biol Sci 371(1705):5. https://doi.org/10.1098/rstb.2015.0362

    Article  CAS  Google Scholar 

  • von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, Oxford

    Google Scholar 

  • Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C et al (2016) Is bigger always better? The importance of cortical configuration with respect to cognitive ability. Neuroimage 129:356–366

    PubMed  PubMed Central  Google Scholar 

  • Wang L, Song M, Jiang T, Zhang Y, Yu C (2011) Regional homogeneity of the resting-state brain activity correlates with individual intelligence. Neurosci Lett 488(3):275–278

    CAS  PubMed  Google Scholar 

  • Wechsler D (1939) The measurement of adult intelligence. Williams & Wilkins Co, Baltimore

    Google Scholar 

  • Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F, Moutoussis M, Prabhu G et al (2016) Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci 113(32):9105–9110

    CAS  PubMed  Google Scholar 

  • Wu K, Taki Y, Sato K, Sassa Y, Inoue K, Goto R et al (2011) The overlapping community structure of structural brain network in young healthy individuals. PLoS ONE 6(5):e19608. https://doi.org/10.1371/journal.pone.0019608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JJ, Yoon U, Yun HJ, Im K, Choi YY, Lee KH et al (2013) Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience 246:351–361

    CAS  PubMed  Google Scholar 

  • Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Gan JQ, Wang H (2017) Neurocognitive mechanisms of mathematical giftedness: a literature review. Appl Neuropsychol Child 6(1):79–94. https://doi.org/10.1080/21622965.2015.1119692

    Article  PubMed  Google Scholar 

  • Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107(42):18191–18196

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Ministerio de Economía y Competividad (PSI2013-47216-P) to JMSG. JSC was partially supported by a mobility grant from the Ministerio de Educación, Cultura y Deporte (MINECO, ref. PRX15/00127) and by the Ministerio de Economía y Competividad through the grant TEC2016-77791-C4-2-R. RRG was supported by a strategic award from the Wellcome Trust to the University of Cambridge and University College London (095844/Z/11/Z) and the Guarantors of Brain Charity (264139). The authors would like to thank M. Shinn for his useful comments on the versatility parameter and for providing the code to calculate it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Serra-Grabulosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3028 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solé-Casals, J., Serra-Grabulosa, J.M., Romero-Garcia, R. et al. Structural brain network of gifted children has a more integrated and versatile topology. Brain Struct Funct 224, 2373–2383 (2019). https://doi.org/10.1007/s00429-019-01914-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01914-9

Keywords

Navigation