Brain Structure and Function

, Volume 224, Issue 2, pp 907–923 | Cite as

Structure, asymmetry, and connectivity of the human temporo-parietal aslant and vertical occipital fasciculi

  • Sandip S. Panesar
  • Joao Tiago A. Belo
  • Fang-Cheng Yeh
  • Juan C. Fernandez-MirandaEmail author
Original Article


We previously proposed a bipartite ‘dorsal–ventral’ model of human arcuate fasciculus (AF) morphology. This model does not, however, account for the ‘vertical,’ temporo-parietal subdivision of the AF described in earlier dissection and tractographic studies. In an effort to address the absence of the vertical AF (VAF) within ‘dorsal–ventral’ nomenclature, we conducted a dedicated tractographic and white-matter dissection study of this tract and another short, vertical, posterior-hemispheric fascicle: the vertical occipital fasciculus (VOF). We conducted atlas-based, non-tensor, deterministic tractography in 30 single subjects from the Human Connectome Project database and verified our results using an average diffusion atlas compiled from 842 separate normal subjects. We also performed white-matter dissection in four post-mortem specimens. Our  tractography results demonstrate that the VAF is, in fact, a bipartite system connecting the ventral parietal and temporal regions, with variable connective, and no volumetric lateralization. The VOF is a non-lateralized, non-segmented system connecting lateral occipital areas with basal–temporal regions. Importantly, the VOF was spatially dissociated from the VAF. As the VAF demonstrates no overall connective or volumetric lateralization, we postulate its distinction from the AF system and propose its re-naming to the ‘temporo-parietal aslant tract,’ (TPAT), with unique dorsal and ventral subdivisions. Our tractography results were supported by diffusion atlas and white-matter dissection findings.


Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

429_2018_1812_MOESM1_ESM.jpg (3.8 mb)
Supplementary material 1 (JPG 3892 KB)
429_2018_1812_MOESM2_ESM.jpg (3.6 mb)
Supplementary material 2 (JPG 3737 KB)


  1. Acheson DJ, Hagoort P (2013) Stimulating the brain’s language network: syntactic ambiguity resolution after TMS to the inferior frontal gyrus and middle temporal gyrus. J Cogn Neurosci 25:1664–1677. CrossRefPubMedGoogle Scholar
  2. Bartsch AJ, Geletneky K, Jbabdi S (2013) The temporoparietal fiber intersection area and wernicke perpendicular fasciculus. Neurosurgery 73:E381–E382. CrossRefPubMedGoogle Scholar
  3. Bouhali F, Thiebaut de Schotten M, Pinel P et al (2014) Anatomical connections of the visual word form area. J Neurosci Off J Soc Neurosci 34:15402–15414. CrossRefGoogle Scholar
  4. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex J Devoted Study Nerv Syst Behav 44:1105–1132. CrossRefGoogle Scholar
  5. Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17:77–94. CrossRefPubMedGoogle Scholar
  6. Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16. CrossRefPubMedGoogle Scholar
  7. Catani M, Dell’acqua F, Vergani F et al (2012) Short frontal lobe connections of the human brain. Cortex J Devoted Study Nerv Syst Behav 48:273–291. CrossRefGoogle Scholar
  8. Catani M, Mesulam MM, Jakobsen E et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain J Neurol 136:2619–2628. CrossRefGoogle Scholar
  9. DeYoe EA, Carman GJ, Bandettini P et al (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci U S A 93:2382–2386CrossRefPubMedPubMedCentralGoogle Scholar
  10. Farquharson S, Tournier J-D, Calamante F et al (2013) White matter fiber tractography: why we need to move beyond DTI. J Neurosurg 118:1367–1377. CrossRefPubMedGoogle Scholar
  11. Farrer C, Frey SH, Horn V et al (2008) The Angular Gyrus Computes Action Awareness Representations. Cereb Cortex 18:254–261. CrossRefPubMedGoogle Scholar
  12. Fernández-Miranda JC, Rhoton AL, Alvarez-Linera J et al (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026. (discussion 1026–1028) CrossRefPubMedGoogle Scholar
  13. Fernández-Miranda JC, Wang Y, Pathak S et al (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220:1665–1680. CrossRefPubMedGoogle Scholar
  14. Fridriksson J, Kjartansson O, Morgan PS et al (2010) Impaired Speech Repetition and Left Parietal Lobe Damage. J Neurosci 30:11057–11061. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex N Y N 18:2471–2482. CrossRefGoogle Scholar
  16. Güngör A, Baydin S, Middlebrooks EH et al (2017) The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg 126:945–971. CrossRefPubMedGoogle Scholar
  17. Kamali A, Flanders AE, Brody J et al (2014a) Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct 219:269–281. CrossRefPubMedGoogle Scholar
  18. Kamali A, Sair HI, Radmanesh A, Hasan KM (2014b) Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience 277:577–583. CrossRefPubMedGoogle Scholar
  19. Keser Z, Ucisik-Keser FE, Hasan KM (2016) Quantitative mapping of human brain vertical-occipital fasciculus. J Neuroimaging Off J Am Soc Neuroimaging 26:188–193. CrossRefGoogle Scholar
  20. Lawes INC, Barrick TR, Murugam V et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage 39:62–79. CrossRefPubMedGoogle Scholar
  21. Martino J, De Lucas EM (2014) Subcortical anatomy of the lateral association fascicles of the brain: a review. Clin Anat N Y N 27:563–569. CrossRefGoogle Scholar
  22. Martino J, García-Porrero JA (2013) Wernicke perpendicular fasciculus and vertical portion of the superior longitudinal fasciculus: in reply. Neurosurgery 73:E382–E383. CrossRefPubMedGoogle Scholar
  23. Martino J, da Silva-Freitas R, Caballero H et al (2013a) Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery 72:87–97. discussion 97–98.PubMedGoogle Scholar
  24. Martino J, De Witt Hamer PC, Berger MS et al (2013b) Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 218:105–121. CrossRefPubMedGoogle Scholar
  25. Milner AD (1997) Vision without knowledge. Philos Trans R Soc Lond B Biol Sci 352:1249–1256. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Panesar SS, Yeh F-C, Deibert CP et al (2017) A diffusion spectrum imaging-based tractographic study into the anatomical subdivision and cortical connectivity of the ventral external capsule: uncinate and inferior fronto-occipital fascicles. Neuroradiology 59:971–987. CrossRefPubMedGoogle Scholar
  27. Rilling JK, Glasser MF, Preuss TM et al (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428. CrossRefPubMedGoogle Scholar
  28. Takemura H, Rokem A, Winawer J et al (2016) A major human white matter pathway between dorsal and ventral visual cortex. Cereb Cortex N Y N 26:2205–2214. CrossRefGoogle Scholar
  29. Takemura H, Pestilli F, Weiner KS et al (2017) Occipital white matter tracts in human and macaque. Cereb Cortex N Y N 27:3346–3359. CrossRefGoogle Scholar
  30. Thiebaut de Schotten M, Ffytche DH, Bizzi A et al (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage 54:49–59. CrossRefPubMedGoogle Scholar
  31. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273–289. CrossRefPubMedGoogle Scholar
  32. Waberski TD, Kreitschmann-Andermahr I, Kawohl W et al (2001) Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neurosci Lett 308:107–110. CrossRefPubMedGoogle Scholar
  33. Wang X, Pathak S, Stefaneanu L et al (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 221:2075–2092. CrossRefPubMedGoogle Scholar
  34. Weiner KS, Yeatman JD, Wandell BA (2017) The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex J Devoted Study Nerv Syst Behav 97:274–276. CrossRefGoogle Scholar
  35. Wu Y, Sun D, Wang Y et al (2016) Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection. Brain Res 1646:152–159. CrossRefPubMedGoogle Scholar
  36. Yeatman JD, Rauschecker AM, Wandell BA (2013) Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang 125:146–155. CrossRefPubMedGoogle Scholar
  37. Yeatman JD, Weiner KS, Pestilli F et al (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci U S A 111:E5214–E5223. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yeh F-C, Tseng W-YI (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. NeuroImage 58:91–99. CrossRefPubMedGoogle Scholar
  39. Yeh F-C, Wedeen VJ, Tseng W-YI (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635. CrossRefPubMedGoogle Scholar
  40. Yeh F-C, Verstynen TD, Wang Y et al (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS One 8:e80713. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yeh F-C, Panesar S, Fernandes D et al (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178:57–68. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sandip S. Panesar
    • 1
  • Joao Tiago A. Belo
    • 2
  • Fang-Cheng Yeh
    • 2
    • 3
  • Juan C. Fernandez-Miranda
    • 1
    Email author
  1. 1.Department of NeurosurgeryStanford UniversityCaliforniaUSA
  2. 2.Department of Neurological SurgeryUniversity of PittsburghPittsburghUSA
  3. 3.Department of BioengineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations