Fronto-parietal numerical networks in relation with early numeracy in young children

Abstract

Early numeracy provides the foundation of acquiring mathematical skills that is essential for future academic success. This study examined numerical functional networks in relation to counting and number relational skills in preschoolers at 4 and 6 years of age. The counting and number relational skills were assessed using school readiness test (SRT). Resting-state fMRI (rs-fMRI) was acquired in 123 4-year-olds and 146 6-year-olds. Among them, 61 were scanned twice over the course of 2 years. Meta-analysis on existing task-based numeracy fMRI studies identified the left parietal-dominant network for both counting and number relational skills and the right parietal-dominant network only for number relational skills in adults. We showed that the fronto-parietal numerical networks, observed in adults, already exist in 4-year and 6-year-olds. The counting skills were associated with the bilateral fronto-parietal network in 4-year-olds and with the right parietal-dominant network in 6-year-olds. Moreover, the number relational skills were related to the bilateral fronto-parietal and right parietal-dominant networks in 4-year-olds and had a trend of the significant relationship with the right parietal-dominant network in 6-year-olds. Our findings suggested that neural fine-tuning of the fronto-parietal numerical networks may subserve the maturation of numeracy in early childhood.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alloway TP, Alloway RG (2010) Investigating the predictive roles of working memory and IQ in academic attainment. J Exp Child Psychol 106:20–29. https://doi.org/10.1016/j.jecp.2009.11.003

    Article  Google Scholar 

  2. Ansari D, Dhital B (2006) Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. J Cogn Neurosci 18:1820–1828. https://doi.org/10.1162/jocn.2006.18.11.1820

    Article  PubMed  Google Scholar 

  3. Ansari D, Karmiloff-Smith A (2002) Atypicial trajectories of number development: a neuroconstructivist perspective. Trends Cogn Sci 6:511–516. https://doi.org/10.1016/S1364-6613(02)02040-5

    Article  PubMed  Google Scholar 

  4. Aunio P, Niemivirta M (2010) Predicting children’s mathematical performance in grade one by early numeracy. Learn Individ Differ 20:427–435. https://doi.org/10.1016/j.lindif.2010.06.003

    Article  Google Scholar 

  5. Bartelet D, Vaessen A, Blomert L, Ansari D (2014) What basic number processing measures in kindergarten explain unique variability in first-grade arithmetic proficiency? J Exp Child Psychol 117:12–28. https://doi.org/10.1016/j.jecp.2013.08.010

    Article  PubMed  Google Scholar 

  6. Brauer J, Friederici AD (2007) Functional neural networks of semantic and syntactic processes in the developing brain. J Cogn Neurosci 19:1609–1623. https://doi.org/10.1162/jocn.2007.19.10.1609

    Article  PubMed  Google Scholar 

  7. Bullard SE, Griss M, Greene S, Gekker A (2013) Encyclopedia of clinical neuropsychology. Arch Clin Neuropsych 28:92. https://doi.org/10.1093/arclin/acs103

    Article  Google Scholar 

  8. Cantlon JF, Brannon EM, Carter EJ, Pelphrey KA (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biol 4:844–854. https://doi.org/10.1371/journal.pbio.0040125

    Article  CAS  Google Scholar 

  9. Cantlon JF, Libertus ME, Pinel P et al (2009) The neural development of an abstract concept of number. J Cogn Neurosci 21:2217–2229. https://doi.org/10.1162/jocn.2008.21159

    Article  PubMed  PubMed Central  Google Scholar 

  10. Case R, Demetriou A, Platsidou M, Kazi S (2001) Integrating concepts and tests of intelligence from the differential and developmental traditions. Intelligence 29:307–336. https://doi.org/10.1016/S0160-2896(00)00057-X

    Article  Google Scholar 

  11. Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of action observation and imitation in the human brain. Neuroimage 50:1148–1167. https://doi.org/10.1016/j.neuroimage.2009.12.112

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chew AL, Morris JD (1984) Validation of the Lollipop test: a diagnostic screening test of school readiness. Educ Psychol Meas 44:987–991. https://doi.org/10.1177/0013164484444022

    Article  Google Scholar 

  13. Chochon F, Cohen L, van de Moortele PF, Dehaene S (1999) Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci 11:617–630. https://doi.org/10.1162/089892999563689

    Article  CAS  PubMed  Google Scholar 

  14. Crone EA, Steinbeis N (2017) Neural perspectives on cognitive control development during childhood and adolescence. Trends Cogn Sci 21:205–215. https://doi.org/10.1016/j.tics.2017.01.003

    Article  PubMed  Google Scholar 

  15. Dehaene S (2011) The number sense: how the mind creates mathematics. Oxford University Press, New York

    Google Scholar 

  16. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506. https://doi.org/10.1080/02643290244000239

    Article  PubMed  Google Scholar 

  17. Du J, Younes L, Qiu A (2011) Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. Neuroimage 56:162–173. https://doi.org/10.1016/j.neuroimage.2011.01.067

    Article  PubMed  PubMed Central  Google Scholar 

  18. Edwards LA, Wagner JB, Simon CE, Hyde DC (2016) Functional brain organization for number processing in pre-verbal infants. Dev Sci 19:757–769. https://doi.org/10.1111/desc.12333

    Article  PubMed  Google Scholar 

  19. Eickhoff SB, Bzdok D, Laird AR et al (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59:2349–2361. https://doi.org/10.1016/j.neuroimage.2011.09.017

    Article  PubMed  Google Scholar 

  20. Eickhoff SB, Nichols TE, Laird AR et al (2016) Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. Neuroimage 137:70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eickhoff SB, Laird AR, Fox PM et al (2017) Implementation errors in the GingerALE software: description and recommendations. Hum Brain Mapp 38:7–11. https://doi.org/10.1002/hbm.23342

    Article  PubMed  Google Scholar 

  22. Emerson RW, Cantlon JF (2012) Early math achievement and functional connectivity in the fronto-parietal network. Dev Cogn Neurosci 2:S139–S151. https://doi.org/10.1016/j.dcn.2011.11.003

    Article  PubMed  Google Scholar 

  23. Emerson RW, Cantlon JF (2015) Continuity and change in children’s longitudinal neural responses to numbers. Dev Sci 18:314–326. https://doi.org/10.1111/desc.12215

    Article  PubMed  Google Scholar 

  24. Feng X, Peng L, Chang-Quan L et al (2014) Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study. Biol Psychol 101:61–68. https://doi.org/10.1016/j.biopsycho.2014.06.005

    Article  PubMed  Google Scholar 

  25. Fias W, Menon V, Szucs D (2013) Multiple components of developmental dyscalculia. Trends Neurosci Educ 2:43–47. https://doi.org/10.1016/j.tine.2013.06.006

    Article  Google Scholar 

  26. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation. Neuron 33(3):341–355

    Article  CAS  PubMed  Google Scholar 

  27. Fitzpatrick C, Pagani LS (2012) Toddler working memory skills predict kindergarten school readiness. Intelligence 40:205–212. https://doi.org/10.1016/j.intell.2011.11.007

    Article  Google Scholar 

  28. Forget-Dubois N, Lemelin J-P, Boivin M et al (2007) Predicting early school achievement with the EDI: a longitudinal population-based study. Early Educ Dev 18:405–426. https://doi.org/10.1080/10409280701610796

    Article  Google Scholar 

  29. Fuson KC (1988) Children’s counting and concept of number. Springer, New York

    Google Scholar 

  30. Gelman R, Galistell CH (1978) The child’s understanding of number. Harvard University Press, Cambridge

    Google Scholar 

  31. Ghorai S, Mukherjee A, Sengupta S, Dutta PK (2011) Cancer classification from gene expression data by NPPC ensemble. IEEE/ACM Trans Comput Biol Bioinform 8:659–671. https://doi.org/10.1109/TCBB.2010.36

    Article  PubMed  Google Scholar 

  32. Harvey BM, Ferri S, Orban GA (2017) Comparing parietal quantity-processing mechanisms between humans and macaques. Trends Cogn Sci 21:779–793. https://doi.org/10.1016/j.tics.2017.07.002

    Article  PubMed  Google Scholar 

  33. Hildman LK, Friedberg PM, Wright PM (1993) Kaufman brief intelligence test. J Psychoeduc Assess 11:98–101

    Article  Google Scholar 

  34. Hyde DC, Boas DA, Blair C, Carey S (2010) Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. Neuroimage 53:647–652. https://doi.org/10.1016/j.neuroimage.2010.06.030

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jolles D, Ashkenazi S, Kochalka J et al (2016a) Parietal hyper-connectivity, aberrant brain organization, and circuit-based biomarkers in children with mathematical disabilities. Dev Sci 19:613–631. https://doi.org/10.1111/desc.12399

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jolles D, Supekar K, Richardson J et al (2016b) Reconfiguration of parietal circuits with cognitive tutoring in elementary school children. Cortex 83:231–245. https://doi.org/10.1016/j.cortex.2016.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jordan NC, Kaplan D (2009) Early math matters: kindergarten number competence and later mathematics outcomes. Dev Psychol 45:850–867. https://doi.org/10.1037/a0014939.Early

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kaufman AS, Kaufman NL (1993) A review: Kaufman brief intelligence test. Percept Mot Skills 77:703. https://doi.org/10.1186/1471-2318-7-23

    Article  Google Scholar 

  39. Kaufmann L, Vogel SE, Starke M et al (2009) Numerical and non-numerical ordinality processing in children with and without developmental dyscalculia: evidence from fMRI. Cogn Dev 24:486–494. https://doi.org/10.1016/j.cogdev.2009.09.001

    Article  Google Scholar 

  40. Kersey AJ, Cantlon JF (2016) Neural tuning to numerosity relates to perceptual tuning in 3- to 6-year-old children. J Neurosci 37:512–522. https://doi.org/10.1523/JNEUROSCI.0065-16.2016

    Article  Google Scholar 

  41. Kolkman ME, Kroesbergen EH, Leseman PPM (2013) Early numerical development and the role of non-symbolic and symbolic skills. Learn Instr 25:95–103. https://doi.org/10.1016/j.learninstruc.2012.12.001

    Article  Google Scholar 

  42. Korhonen O, Saarimäki H, Glerean E et al (2017) Consistency of regions of interest as nodes of fMRI functional brain networks. Netw Neurosci 1:254–274. https://doi.org/10.1162/NETN_a_00013

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kyttälä M, Lehto JE (2008) Some factors underlying mathematical performance: the role of visuospatial working memory and non-verbal intelligence. Eur J Psychol Educ 23:77–94. https://doi.org/10.1007/BF03173141

    Article  Google Scholar 

  44. Laird AR (2009) ALE meta-analysis workflows via the BrainMap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:1–11. https://doi.org/10.3389/neuro.11.023.2009

    Article  Google Scholar 

  45. Leibovich T, Ansari D (2016) The symbol-grounding problem in numerical cognition: a review of theory, evidence, and outstanding questions. Can J Exp Psychol Can Psychol expérimentale 70:12–23. https://doi.org/10.1037/cep0000070

    Article  Google Scholar 

  46. Lussier CA, Cantlon JF (2017) Developmental bias for number words in the intraparietal sulcus. Dev Sci 20:1–18. https://doi.org/10.1111/desc.12385

    Article  Google Scholar 

  47. Menon V (2014) Arithmetic in the child and adult brain. In: Kadosh RC, Dowke A (eds) The oxford handbook of mathematical cognition. Oxford University Press, Oxford, pp 1–23

    Google Scholar 

  48. Metcalfe AWS, Ashkenazi S, Rosenberg-Lee M, Menon V (2013) Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children. Dev Cogn Neurosci 6:162–175. https://doi.org/10.1016/j.dcn.2013.10.001

    Article  PubMed  Google Scholar 

  49. Nieder A (2005) Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6:177–190. https://doi.org/10.1038/nrn1626

    Article  CAS  PubMed  Google Scholar 

  50. Nieder A (2009) Prefrontal cortex and the evolution of symbolic reference. Curr Opin Neurobiol 19:99–108. https://doi.org/10.1016/j.conb.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  51. Nieder A, Dehaene S (2009) Representation of number in the brain. Annu Rev Neurosci 32:185–208. https://doi.org/10.1146/annurev.neuro.051508.135550

    Article  CAS  PubMed  Google Scholar 

  52. Okamoto Y, Case R (1996) Exploring the microstructure of children s central conceptual structures in domain of number. Dev Child’s Thought. https://doi.org/10.1111/j.1540-5834.1996.tb00536.x

    Article  Google Scholar 

  53. Park J, Park DC, Polk TA (2013) Parietal functional connectivity in numerical cognition. Cereb Cortex 23:2127–2135. https://doi.org/10.1093/cercor/bhs193

    Article  PubMed  Google Scholar 

  54. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  55. Piaget J (1965) The child’s conception of number. Norton, New York

    Google Scholar 

  56. Power JD, Barnes KA, Snyder AZ et al (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  PubMed  Google Scholar 

  57. Power JD, Mitra A, Laumann TO et al (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84:320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048

    Article  PubMed  Google Scholar 

  58. Pratt ME, McClelland MM, Swanson J, Lipscomb ST (2016) Family risk profiles and school readiness: a person-centered approach. Early Child Res Q 36:462–474. https://doi.org/10.1016/j.ecresq.2016.01.017

    Article  Google Scholar 

  59. Price GR, Holloway I, Räsänen P et al (2007) Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol 17:1042–1043. https://doi.org/10.1016/j.cub.2007.10.013

    Article  CAS  Google Scholar 

  60. Purpura DJ, Lonigan CJ (2013) Informal numeracy skills: the structure and relations among numbering, relations, and arithmetic operations in preschool. Am Educ Res J 50:178–209. https://doi.org/10.3102/0002831212465332

    Article  Google Scholar 

  61. Purpura DJ, Hume LE, Sims DM, Lonigan CJ (2011) Early literacy and early numeracy: The value of including early literacy skills in the prediction of numeracy development. J Exp Child Psychol 110:647–658. https://doi.org/10.1016/j.jecp.2011.07.004

    Article  PubMed  Google Scholar 

  62. Raghubar KP, Barnes MA (2016) Early numeracy skills in preschool-aged children: a review of neurocognitive findings and implications for assessment and intervention. Clin Neuropsychol 4046:1–23. https://doi.org/10.1080/13854046.2016.1259387

    Article  Google Scholar 

  63. Reynvoet B, Sasanguie D (2016) The symbol grounding problem revisited: a thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol–symbol associations. Front Psychol 07:1–11. https://doi.org/10.3389/fpsyg.2016.01581

    Article  Google Scholar 

  64. Rivera SM, Reiss AL, Eckert MA, Menon V (2005) Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cereb Cortex 15:1779–1790. https://doi.org/10.1093/cercor/bhi055

    Article  CAS  PubMed  Google Scholar 

  65. Rosenberg-Lee M, Barth M, Menon V (2011) What difference does a year of schooling make?. Maturation of brain response and connectivity between 2nd and 3rd grades during arithmetic problem solving. Neuroimage 57:796–808. https://doi.org/10.1016/j.neuroimage.2011.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sokolowski HM, Fias W, Mousa A, Ansari D (2016) Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: a functional neuroimaging meta-analysis. Neuroimage. https://doi.org/10.1016/j.neuroimage.2016.10.028

    Article  PubMed  Google Scholar 

  67. Tan M, Qiu A (2016) Large deformation multiresolution diffeomorphic metric mapping for multiresolution cortical surfaces: a coarse-to-fine approach. IEEE Trans Image Process. 25(9):4061–4074. https://doi.org/10.1109/TIP.2016.2574982

    Article  PubMed  Google Scholar 

  68. Toll SWM, Van Viersen S, Kroesbergen EH, Van Luit JEH (2015) The development of (non-)symbolic comparison skills throughout kindergarten and their relations with basic mathematical skills. Learn Individ Differ 38:10–17. https://doi.org/10.1016/j.lindif.2014.12.006

    Article  Google Scholar 

  69. Tomita H, Ohbayashi M, Nakahara K et al (1999) Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401:699–703. https://doi.org/10.1038/44372

    Article  CAS  PubMed  Google Scholar 

  70. Turkeltaub PE, Eickhoff SB, Laird AR et al (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum Brain Mapp 33:1–13. https://doi.org/10.1002/hbm.21186

    Article  PubMed  Google Scholar 

  71. Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  72. UNICEF (2012) School readiness: a conceptual framework. United Nations Children's Fund, New York. Retrieved from https://www.unicef.org/education/files/Chil2Child_ConceptualFramework_FINAL(1).pdf

  73. Van de Rijt B (1996) Voorbereidende rekenvaardigheiden bij kleuters [Early mathematical competence in young children]. Utrecht University, Graviant, Doetinchem

    Google Scholar 

  74. Vanbinst K, Ghesquière P, De Smedt B (2015) Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learn Individ Differ 37:153–160. https://doi.org/10.1016/j.lindif.2014.12.004

    Article  Google Scholar 

  75. Vogel SE, Goffin C, Ansari D (2015) Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: an fMR-adaptation study. Dev Cogn Neurosci 12:61–73. https://doi.org/10.1016/j.dcn.2014.12.001

    Article  PubMed  Google Scholar 

  76. Wee C, Yap P, Zhang D, Denny K (2012) Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59:2045–2056. https://doi.org/10.1016/j.neuroimage.2011.10.015.Identification

    Article  PubMed  Google Scholar 

  77. Zhang H, Chen C, Zhou X (2012) Neural correlates of numbers and mathematical terms. Neuroimage 60:230–240. https://doi.org/10.1016/j.neuroimage.2011.12.006

    Article  PubMed  Google Scholar 

Download references

Funding

This research is supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore—NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding is provided by NMRC (NMRC/CBRG/0039/2013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anqi Qiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 180 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wee, C., Poh, J.S. et al. Fronto-parietal numerical networks in relation with early numeracy in young children. Brain Struct Funct 224, 263–275 (2019). https://doi.org/10.1007/s00429-018-1774-2

Download citation

Keywords

  • School readiness test
  • Counting
  • Number relation
  • Resting-state functional magnetic resonance imaging
  • Fronto-parietal network