Adamantidis A et al (2008) Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci 27:1793–1800. https://doi.org/10.1111/j.1460-9568.2008.06129.x
Article
PubMed
Google Scholar
Ahnaou A, Dautzenberg FM, Huysmans H, Steckler T, Drinkenburg WH (2011) Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1(−/−) mice. Behav Brain Res 218:42–50. https://doi.org/10.1016/j.bbr.2010.11.019
Article
CAS
PubMed
Google Scholar
Benedetto L, Rodriguez-Servetti Z, Lagos P, D’Almeida V, Monti JM, Torterolo P (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11–15 https://doi.org/10.1016/j.peptides.2012.10.005
Article
CAS
PubMed
Google Scholar
Bittencourt JC et al (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245. https://doi.org/10.1002/cne.903190204
Article
CAS
PubMed
Google Scholar
Brischoux F, Cvetkovic V, Griffond B, Fellmann D, Risold PY (2002) Time of genesis determines projection and neurokinin-3 expression patterns of diencephalic neurons containing melanin-concentrating hormone. Eur J Neurosci 16:1672–1680
Article
CAS
PubMed
Google Scholar
Chee MJ, Arrigoni E, Maratos-Flier E (2015a) Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci 35:3644–3651. https://doi.org/10.1523/JNEUROSCI.4187-14.2015
Article
CAS
PubMed
PubMed Central
Google Scholar
Chee MJ et al (2015b) Melanin-concentrating hormone is necessary for olanzapine-inhibited locomotor activity in male mice. Eur Neuropsychopharmacol 25:1808–1816. https://doi.org/10.1016/j.euroneuro.2015.05.010
Article
CAS
PubMed
PubMed Central
Google Scholar
Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23:10691–10702
Article
CAS
PubMed
Google Scholar
Cvetkovic V, Brischoux F, Griffond B, Bernard G, Jacquemard C, Fellmann D, Risold PY (2003a) Evidence of melanin-concentrating hormone-containing neurons supplying both cortical neuroendocrine projections. Neuroscience 116:31–35
Article
CAS
PubMed
Google Scholar
Cvetkovic V, Poncet F, Fellmann D, Griffond B, Risold PY (2003b) Diencephalic neurons producing melanin-concentrating hormone are influenced by local and multiple extra-hypothalamic tachykininergic projections through the neurokinin 3 receptor. Neuroscience 119:1113–1145
Article
CAS
PubMed
Google Scholar
Cvetkovic V, Brischoux F, Jacquemard C, Fellmann D, Griffond B, Risold PY (2004) Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. J Neurochem 91:911–919. https://doi.org/10.1111/j.1471-4159.2004.02776.x
Article
CAS
PubMed
Google Scholar
Ferreira JGP, Bittencourt JC, Adamantidis A (2017) Melanin-concentrating hormone and sleep. Curr Opin Neurobiol 44:152–158. https://doi.org/10.1016/j.conb.2017.04.008
Article
CAS
PubMed
Google Scholar
Fujimoto M, Fukuda S, Sakamoto H, Takata J, Sawamura S (2017) Neuropeptide glutamic acid-isoleucine (NEI)-induced paradoxical sleep in rats. Peptides 87:28–33. https://doi.org/10.1016/j.peptides.2016.11.007
Article
CAS
PubMed
Google Scholar
Glick M, Segal-Lieberman G, Cohen R, Kronfeld-Schor N (2009) Chronic MCH infusion causes a decrease in energy expenditure and body temperature, and an increase in serum IGF-1 levels in mice. Endocrine 36:479–485. https://doi.org/10.1007/s12020-009-9252-5
Article
CAS
PubMed
Google Scholar
Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C (2007) Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol 505:147–157. https://doi.org/10.1002/cne.21482
Article
PubMed
Google Scholar
Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci USA 106:2418–2422. https://doi.org/10.1073/pnas.0811400106
Article
PubMed
Google Scholar
Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, Fort P (2012) Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One 7:e52525. https://doi.org/10.1371/journal.pone.0052525
Article
CAS
PubMed
PubMed Central
Google Scholar
Jego S et al (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16:1637–1643. https://doi.org/10.1038/nn.3522
Article
CAS
PubMed
PubMed Central
Google Scholar
Keating GL, Kuhar MJ, Bliwise DL, Rye DB (2010) Wake promoting effects of cocaine and amphetamine-regulated transcript (CART). Neuropeptides 44:241–246. https://doi.org/10.1016/j.npep.2009.12.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Kitka T et al (2011) Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 59:686–694. https://doi.org/10.1016/j.neuint.2011.06.015
Article
CAS
PubMed
Google Scholar
Konadhode RR et al (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33:10257–10263. https://doi.org/10.1523/JNEUROSCI.1225-13.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong D et al (2010) Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab 12:545–552. https://doi.org/10.1016/j.cmet.2010.09.013
Article
CAS
PubMed
Google Scholar
Krenzer M et al (2011) Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One 6:e24998. https://doi.org/10.1371/journal.pone.0024998
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20:3830–3842
Article
CAS
PubMed
Google Scholar
Mickelsen LE et al (2017) Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro. https://doi.org/10.1523/ENEURO.0013-17.2017
Article
PubMed
PubMed Central
Google Scholar
Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17:293–298. https://doi.org/10.1016/j.smrv.2012.10.002
Article
PubMed
Google Scholar
Sapin E, Berod A, Leger L, Herman PA, Luppi PH, Peyron C (2010) A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 5:e11766 https://doi.org/10.1371/journal.pone.0011766
Article
CAS
PubMed
PubMed Central
Google Scholar
Scammell T, Gerashchenko D, Urade Y, Onoe H, Saper C, Hayaishi O (1998) Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proc Natl Acad Sci USA 95:7754–7759
Article
CAS
PubMed
Google Scholar
Schneeberger M et al (2018) Functional analysis reveals differential effects of glutamate and MCH neuropeptide in MCH neurons. Mol Metab 13:83–89. https://doi.org/10.1016/j.molmet.2018.05.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Tong Q et al (2007) Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab 5:383–393. https://doi.org/10.1016/j.cmet.2007.04.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:14. https://doi.org/10.3389/fneur.2011.00014
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsunematsu T et al (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34:6896–6909. https://doi.org/10.1523/JNEUROSCI.5344-13.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Varin C, Luppi PH, Fort P (2018) Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep. https://doi.org/10.1093/sleep/zsy068
Article
PubMed
Google Scholar
Vas S et al (2013) Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS One 8:e59809. https://doi.org/10.1371/journal.pone.0059809
Article
CAS
PubMed
PubMed Central
Google Scholar
Verret L et al (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19. https://doi.org/10.1186/1471-2202-4-19
Article
PubMed
PubMed Central
Google Scholar
Vetrivelan R, Fuller PM, Tong Q, Lu J (2009) Medullary circuitry regulating rapid eye movement sleep and motor atonia. J Neurosci 29:9361–9369. https://doi.org/10.1523/JNEUROSCI.0737-09.2009
Article
CAS
PubMed
PubMed Central
Google Scholar
Vetrivelan R et al (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113. https://doi.org/10.1016/j.neuroscience.2016.08.046
Article
CAS
PubMed
PubMed Central
Google Scholar
Whiddon BB, Palmiter RD (2013) Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling. J Neurosci 33:2009–2016. https://doi.org/10.1523/JNEUROSCI.3921-12.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M (2008) Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156:819–829. https://doi.org/10.1016/j.neuroscience.2008.08.048
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamashita T, Yamanaka A (2017) Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 44:94–100. https://doi.org/10.1016/j.conb.2017.03.020
Article
CAS
PubMed
Google Scholar
Zhou D, Shen Z, Strack AM, Marsh DJ, Shearman LP (2005) Enhanced running wheel activity of both Mch1r- and Pmch-deficient mice. Regul Pept 124:53–63. https://doi.org/10.1016/j.regpep.2004.06.026
Article
CAS
PubMed
Google Scholar