Skip to main content

Advertisement

Log in

Morphological patterns and spatial probability maps of two defining sulci of the posterior ventrolateral frontal cortex of the human brain: the sulcus diagonalis and the anterior ascending ramus of the lateral fissure

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The sulcus diagonalis (ds) and the anterior ascending ramus of the lateral fissure (aalf) are two defining sulci of the posterior ventrolateral frontal cortex, which is also known as the anterior language region in the language dominant hemisphere. The aalf extends dorsally from the lateral fissure, separating the pars opercularis from the pars triangularis of the inferior frontal gyrus. The ds, which is a relatively vertical sulcus, is found within the pars opercularis. Given the proximity and similar orientation of these two sulci, it can be difficult to identify them properly. The present study provides a means of differentiating these two sulci accurately using magnetic resonance imaging (MRI). Voxels within the ds and the aalf were labeled in 40 in vivo MRI volumes (1.5 T) that had been linearly registered to the Montreal Neurological Institute stereotaxic space to examine the morphological patterns of these two sulci and classify these patterns based on relations with neighboring sulci. The morphological variability and spatial extent of each sulcus was then quantified in the form of volumetric and surface spatial probability maps. The ds, a rather superficial sulcus, could be identified in 51.25% of hemispheres. The aalf, on the other hand, could be identified in 96.25% of hemispheres and was observed to extend medially, deep below the surface of the hemisphere, to reach the circular sulcus of the insula. Understanding the details of the sulcal morphology of this region, which, in the language dominant left hemisphere, constitutes Broca’s area, is crucial to functional and structural neuroimaging studies investigating language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amiez C, Kostopoulos P, Champod A-S, Petrides M (2006) Local morphology predicts functional organization of the dorsal premotor region in the human brain. J Neurosci 26:2724–2731

    Article  CAS  Google Scholar 

  • Amiez C, Neveu R, Warrot D, Petrides M, Knoblauch K, Procyk E (2013) The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. J Neurosci 33:2217–2228

    Article  CAS  Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings H, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341

    Article  CAS  Google Scholar 

  • Amunts K et al (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—the roles of Brodmann areas 44 and 45. NeuroImage 22:42–56

    Article  Google Scholar 

  • Bailey P, Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Betz W (1881) Ueber die feinere Structur der Gehirnrinde des Menschen. Zentralbl Med Wiss 19:193–195

    Google Scholar 

  • Broca P (1861) Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bulletin et Memoires de la Société Anatomique de Paris 6:330–357

    Google Scholar 

  • Brodmann K (1908) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: die Cortexgliederung des Menschen. Journal für Psychologie und Neurologie 10:231–246

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1910) Feinere Anatomie des Grosshirns. In: Lewandowsky M (ed) Handbuch der Neurologie. Springer, Berlin, pp 206–307

    Chapter  Google Scholar 

  • Campbell AW (1904) Histological studies on the localisation of cerebral function. Br J Psychiatry 50:651–662

    Google Scholar 

  • Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    Article  CAS  Google Scholar 

  • Corballis MC (2003) From mouth to hand: gesture, speech, and the evolution of right-handedness. Behav Brain Sci 26:199–208

    Google Scholar 

  • Cunningham DJ (1905) Textbook of anatomy. W. Wood and company, New York

    Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194

    Article  CAS  Google Scholar 

  • Dejerine J (1914) Semiologie des affections du système nerveux. Masson, Paris

    Google Scholar 

  • Dronkers NF, Plaisant O, Iba-Zizen MT, Cabanis EA (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130:1432–1441

    Article  CAS  Google Scholar 

  • Eberstaller O (1890) Das Stirnhirn: ein Beitrag zur Anatomie der Oberfläche des Grosshirns. Urban & Schwarzenberg, Wein

    Google Scholar 

  • Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. J. Springer, Wein

    Google Scholar 

  • Evans AC, Collins DL, Mills S, Brown E, Kelly R, Peters TM (1993) 3D statistical neuroanatomical models from 305 MRI volumes. In: IEEE conference record nuclear science symposium and medical imaging conference, San Francisco, CA, USA, pp 1813–1817

  • Falzi G, Perrone P, Vignolo LA (1982) Right-left asymmetry in anterior speech region. Arch Neurol 39:239–240

    Article  CAS  Google Scholar 

  • Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207

    Article  CAS  Google Scholar 

  • Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  CAS  Google Scholar 

  • Fischl B et al (2007) Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex 18:1973–1980

    Article  Google Scholar 

  • Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative Group (2011) Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54:313–327

    Article  Google Scholar 

  • Foundas AL, Leonard CM, Gilmore RL, Fennell EB, Heilman KM (1996) Pars triangularis asymmetry and language dominance. Proc Natl Acad Sci USA 93:719–722

    Article  CAS  Google Scholar 

  • Foundas AL, Eure KF, Luevano LF, Weinberger DR (1998) MRI asymmetries of Broca’s area: the pars triangularis and pars opercularis. Brain Lang 64:282–296

    Article  CAS  Google Scholar 

  • Foundas AL, Bollich AM, Corey DM, Hurley M, Heilman KM (2001) Anomalous anatomy of speech–language areas in adults with persistent developmental stuttering. Neurology 57:207–215

    Article  CAS  Google Scholar 

  • Galaburda AM (1980) La région de Broca: observations anatomiques faites un siècle après la mort de son découvreur. Rev Neurol (Paris) 136:609–616

    CAS  Google Scholar 

  • Garey LJ (2006) Brodmann’s ‘localisation in the cerebral cortex’, 3rd edn. Springer, New York

    Google Scholar 

  • Germann J, Robbins S, Halsband U, Petrides M (2005) Precentral sulcal complex of the human brain: morphology and statistical probability maps. J Comp Neurol 493:334–356

    Article  Google Scholar 

  • Horwitz B, Amunts K, Bhattacharyya R, Patkin D, Jeffries K, Zilles K, Braun AR (2003) Activation of Broca’s area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41:1868–1876

    Article  Google Scholar 

  • Huntgeburth SC, Petrides M (2016) Three-dimensional probability maps of the rhinal and the collateral sulci in the human brain. Brain Struct Funct 221:4235–4255

    Article  Google Scholar 

  • Iaria G, Petrides M (2007) Occipital sulci of the human brain: variability and probability maps. J Comp Neurol 501:243–259

    Article  Google Scholar 

  • Klein D, Milner B, Zatorre RJ, Meyer E, Evans AC (1995) The neural substrates underlying word generation: a bilingual functional-imaging study. Proc Natl Acad Sci USA 92:2899–2903

    Article  CAS  Google Scholar 

  • Klein D, Zatorre RJ, Chen J-K, Milner B, Crane J, Belin P, Bouffard M (2006) Bilingual brain organization: a functional magnetic resonance adaptation study. NeuroImage 31:366–375

    Article  Google Scholar 

  • Knaus TA, Corey DM, Bollich AM, Lemen LC, Foundas AL (2007) Anatomical asymmetries of anterior perisylvian speech-language regions. Cortex 43:499–510

    Article  Google Scholar 

  • Kostopoulos P, Petrides M (2003) The mid-ventrolateral prefrontal cortex: insights into its role in memory retrieval. Eur J Neurosci 17:1489–1497

    Article  Google Scholar 

  • Kostopoulos P, Petrides M (2008) Left mid-ventrolateral prefrontal cortex: underlying principles of function. Eur J Neurosci 27:1037–1049

    Article  Google Scholar 

  • Kostopoulos P, Petrides M (2016) Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex. Proc Natl Acad Sci USA 113:1919–1924

    Article  CAS  Google Scholar 

  • Lee YS, Turkeltaub P, Granger R, Raizada RD (2012) Categorical speech processing in Broca’s area: an fMRI study using multivariate pattern-based analysis. J Neurosci 32:3942–3948

    Article  CAS  Google Scholar 

  • LeMay M (1976) Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate. Ann N Y Acad Sci 280:349–366

    Article  CAS  Google Scholar 

  • Manjón JV, Coupé P, Martí-Bonmatí L, Collins DL, Robles M (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31:192–203

    Article  Google Scholar 

  • Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster JL (1995a) A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). NeuroImage 2:89–101

    Article  CAS  Google Scholar 

  • Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster JL (1995b) Digital brain atlases. Trends Neurosci 18:210–211

    Article  CAS  Google Scholar 

  • Mazziotta J et al (2001) A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322

    Article  CAS  Google Scholar 

  • Mock JR, Zadina JN, Corey DM, Cohen JD, Lemen LC, Foundas AL (2012) Atypical brain torque in boys with developmental stuttering. Dev Neuropsychol 37:434–452

    Article  Google Scholar 

  • Mohr JP (1976) Broca’s area and Broca’s aphasia. In: Whitaker H, Whitaker HA (eds) Studies in neurolinguistics, vol 1. Academic Press, New York, pp 201–233

    Google Scholar 

  • Mohr J et al (1978) The Harvard Cooperative Stroke Registry: a prospective registry. Neurology 28:754–762

    Article  CAS  Google Scholar 

  • Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. Thieme, Stuttgart

    Google Scholar 

  • Papoutsi M, de Zwart JA, Jansma JM, Pickering MJ, Bednar JA, Horwitz B (2009) From phonemes to articulatory codes: an fMRI study of the role of Broca’s area in speech production. Cereb Cortex 19:2156–2165

    Article  Google Scholar 

  • Paus T et al (1996) Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb Cortex 6:207–214

    Article  CAS  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man: a clinical study of localization of function. Macmillan, New York

    Google Scholar 

  • Penfield W, Roberts L (1959) Speech and brain mechanisms. Princeton University Press, New Jersey

    Google Scholar 

  • Petrides M (1994) Frontal lobes and working memory: evidence from investigations of the effects of cortical excision in nonhuman primates. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 959–981

    Google Scholar 

  • Petrides M (1996) Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philos Trans R Soc Lond B Biol Sci 351:1455–1462

    Article  CAS  Google Scholar 

  • Petrides M (2006) Broca’s area in the human and the non-human primate brain. In: Grodzinsky Y, Amunts K (eds) Broca’s region. Oxford University Press, Oxford, pp 31–48

    Chapter  Google Scholar 

  • Petrides M (2012) The human cerebral cortex: an MRI atlas of the sulci and gyri in MNI stereotaxic space. Academic Press, Chicago

    Google Scholar 

  • Petrides M (2014) Neuroanatomy of language regions of the human brain. Academic Press, Chicago

    Google Scholar 

  • Petrides M (2016) The ventrolateral frontal region. In: Hickok G, Small SL (eds) Neurobiology of language. Academic Press, London, pp 25–33

    Chapter  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  CAS  Google Scholar 

  • Petrides M, Pandya DN (1988) Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. J Comp Neurol 273:52–66

    Article  CAS  Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative cytoarchitectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol 9. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Petrides M, Pandya DN (2002) Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 16:291–310

    Article  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882

    Article  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Evans AC (1995) Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc Natl Acad Sci USA 92:5803–5807

    Article  CAS  Google Scholar 

  • Rasmussen T, Milner B (1975) Clinical and surgical studies of the cerebral speech areas in man. In: Zülch KJ, Cretzfeldt O, Galbraith GC (eds) Cerebral localization. Springer, Berlin, pp 238–257

    Chapter  Google Scholar 

  • Sarkissov S, Filimonoff I, Kononowa E, Preobraschenskaja I, Kukuew L (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Segal E, Petrides M (2013) Functional activation during reading in relation to the sulci of the angular gyrus region. Eur J Neurosci 38:2793–2801

    Article  Google Scholar 

  • Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  Google Scholar 

  • Smith GE (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41:237–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48

    Article  CAS  Google Scholar 

  • Tomaiuolo F, Giordano F (2016) Cerebal sulci and gyri are intrinsic landmarks for brain navigation in individual subjects: an instrument to assist neurosurgeons in preserving cognitive function in brain tumour surgery (Commentary on Zlatkina et al.). Eur J Neurosci 43:1266–1267

    Article  Google Scholar 

  • Tomaiuolo F, MacDonald J, Caramanos Z, Posner G, Chiavaras M, Evans AC, Petrides M (1999) Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci 11:3033–3046

    Article  CAS  Google Scholar 

  • Vincent RD, Buckthought A, MacDonald D (2016) Display 2.0: software for visualization and segmentation of surfaces and volumes. McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada

    Google Scholar 

  • Wada JA, Clarke R, Hamm A (1975) Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adult and 100 infant brains. Arch Neurol 32:239–246

    Article  CAS  Google Scholar 

  • Wernicke C (1874) Der aphasische Symptomencomplex. Eine psychologische Studie auf anatomischer Basis. M. Cohn and Weigert, Breslau

    Google Scholar 

  • Zlatkina V, Petrides M (2014) Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain. Proc Biol Sci 281:20141493

    Article  Google Scholar 

Download references

Acknowledgements

We thank Philip Novosad for technical assistance with Matlab and MINC Toolkit, as well for providing helpful feedback during manuscript revision. We also thank Guy Sprung and Dr. Sonja Huntgeburth for assistance in translating from German pertinent sections of Eberstaller’s manuscript, and Dr. Rhonda Amsel for statistical advice.

Funding

This research was supported by the Canadian Institutes of Health Research (CIHR) Foundation Grant FDN-143212 awarded to M. Petrides and a Fonds de Recherche du Québec - Santé scholarship awarded to T. Sprung-Much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trisanna Sprung-Much.

Ethics declarations

Ethical standards

The authors declare that they have no competing financial or non-financial interests. All research was conducted in compliance with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Appendix

Appendix

See Figs. 13, 14, 15, 16, 17, and 18.

Fig. 13
figure 13

Volumetric probability map of the anterior ascending ramus of the lateral fissure (aalf) from the 13 left hemispheres of the Type I morphological group, i.e., those hemispheres in which the aalf could be found directly anterior to the inferior precentral sulcus. The x coordinates of the sagittal sections are indicated in the upper right corner of each section; the z and y coordinates are shown on the appropriate axes. The probability map has been overlaid onto the MNI152 2009c asymmetric template used for registration. The anterior ascending ramus extends from an x coordinate of − 59, laterally, to an x coordinate of − 37, medially. The color bar indicates the extent of overlap of the labeled voxels, with a maximum overlap of 65% occurring at voxel position x − 46, y + 20, z + 6

Fig. 14
figure 14

Volumetric probability map of the anterior ascending ramus of the lateral fissure (aalf) from the 9 right hemispheres of the Type I morphological group, i.e., those hemispheres in which the aalf could be found directly anterior to the inferior precentral sulcus. The x coordinates of the sagittal sections are indicated in the upper right corner of each section; the z and y coordinates are shown on the appropriate axes. The probability map has been overlaid onto the MNI152 2009c asymmetric template used for registration. The anterior ascending ramus extends from an x coordinate of + 59, laterally, to an x coordinate of + 37, medially. The color bar indicates the extent of overlap of the labeled voxels, with a maximum overlap of 70% occurring at voxel position x + 54, y + 23, and z + 5

Fig. 15
figure 15

Surface probability maps of the anterior ascending ramus of the lateral fissure (aalf) from a the 13 left hemispheres and b the 9 right hemispheres of the Type I morphological group, i.e., those hemispheres in which the aalf could be found directly anterior to the inferior precentral sulcus. All probability maps have been overlaid onto the surface template, fsaverage, used for registration. The color bar indicates the extent of overlap of the labeled vertices. The x, y, and z coordinates below each surface indicate the position, in MNI305 stereotaxic space, of the vertex with the maximum overlap

Fig. 16
figure 16

Volumetric probability map of the sulcus diagonalis (ds) from a total of 25 left hemispheres that include the 7 left hemispheres classified as sulcal extension cases. The x coordinates of the sagittal sections are indicated in the upper right corner of each section; the z and y coordinates are shown on the appropriate axes. The probability map has been overlaid onto the MNI152 2009c asymmetric template used for registration. The sulcus starts at an x coordinate of − 60, laterally, and finishes, medially, at an x coordinate of − 44. The color bar indicates the level of overlap of the labeled voxels. Two distinct peaks are generated, with a maximum overlap of 28% occurring at voxel position x − 49, y + 17, z + 5

Fig. 17
figure 17

Volumetric probability map of the sulcus diagonalis (ds) from a total of 27 right hemispheres that include the 4 right hemispheres classified as sulcal extension cases. The x coordinates of the sagittal sections are indicated in the upper right corner of each section; the z and y coordinates are shown on the appropriate axes. The probability map has been overlaid onto the MNI152 2009c asymmetric template used for registration. The sulcus starts at an x coordinate of x + 60, laterally, and finishes, medially, at an x coordinate of + 46. The color bar indicates the level of overlap of the labeled voxels. Two distinct peaks are generated, with a maximum overlap of 33% occurring at voxel position x + 54, y + 21, z + 16

Fig. 18
figure 18

Surface probability maps of the sulcus diagonalis (ds) from a total of a 25 left hemispheres and b 27 right hemispheres that include the sulcal extension cases. All probability maps have been overlaid onto the surface template, fsaverage, used for registration. The color bar indicates the extent of overlap of the labeled vertices. The x, y, and z coordinates below each surface indicate the position, in MNI305 stereotaxic space, of the vertex with the maximum overlap

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprung-Much, T., Petrides, M. Morphological patterns and spatial probability maps of two defining sulci of the posterior ventrolateral frontal cortex of the human brain: the sulcus diagonalis and the anterior ascending ramus of the lateral fissure. Brain Struct Funct 223, 4125–4152 (2018). https://doi.org/10.1007/s00429-018-1733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1733-y

Keywords

Navigation