Cortical networks of the mouse brain elaborate within the gray matter

Abstract

In primates, proximal cortical areas are interconnected via within-cortex “intrinsic” pathway, whereas distant areas are connected via “extrinsic” white matter pathway. To date, such distinction has not been clearly done for small-brained mammals like rodents. In this study, we systematically analyzed the data of Allen Mouse Brain Connectivity Atlas to answer this question and found that the ipsilateral cortical connections in mice are almost exclusively contained within the gray matter, although we observed exceptions for projections from the retrosplenial area and the medial/orbital frontal areas. By analyzing axonal projections within the gray matter using Cortical Box method, which enabled us to investigate the layer patterns across different cortical areas, we obtained the following results. First, widespread axonal projections were observed in both upper and lower layers in the vicinity of injections, whereas highly specific “point-to-point” projections were observed toward remote areas. Second, such long-range projections were predominantly aligned in the anteromedial–posterolateral direction. Third, in the majority of these projections, the connecting axons traveled through layer 6. Finally, the projections from the primary and higher order areas to distant targets preferentially terminated in the middle and superficial layers, respectively, suggesting hierarchical connections similar to those of primates. Overall, our study demonstrated conspicuous differences in gray/white matter segregation of axonal projections between rodents and primates, despite certain similarities in the hierarchical cortical organization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bassett DS, Bullmore ET (2016) Small-world brain networks revisited. Neuroscientist 23:499–516

    Google Scholar 

  2. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    CAS  Article  Google Scholar 

  3. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    CAS  Article  Google Scholar 

  4. Buzsáki G, Logothetis N, Singer W (2013) Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80:751–764

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coogan TA, Burkhalter A (1993) Hierarchical organization of areas in rat visual cortex. J Neurosci 13:3749–3772

    CAS  Article  PubMed  Google Scholar 

  6. D’Souza RD, Burkhalter A (2017) A laminar organization for selective cortico-cortical communication. Front Neuroanat 11:71

    Article  PubMed  PubMed Central  Google Scholar 

  7. D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A (2016) Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife 5:e19332

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) A predictive network model of cerebral cortical connectivity based on a distance rule. Neuron 80:184–197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Finlay BL (2016) Principles of network architecture emerging from comparisons of the cerebral cortex in large and small brains. PLoS Biol 14:e1002556

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Burkhalter A (2018) The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97:698–715.e10

    Article  PubMed  Google Scholar 

  12. Goulas A, Uylings HBM, Hilgetag CC (2017) Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse. Brain Struct Funct 222:1281–1295

    Article  PubMed  Google Scholar 

  13. Hirokawa J, Bosch M, Sakata S, Sakurai Y, Yamamori T (2008a) Functional role of the secondary visual cortex in multisensory facilitation in rats. Neuroscience 153:1402–1417

    CAS  Article  PubMed  Google Scholar 

  14. Hirokawa J, Watakabe A, Ohsawa S, Yamamori T (2008b) Analysis of area-specific expression patterns of RORbeta, ER81 and Nurr1 mRNAs in rat neocortex by double in situ hybridization and cortical box method. PLoS One 3:e3266

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hofman MA (2014) Evolution of the human brain: when bigger is better. Front Neuroanat 8:15

    Article  PubMed  PubMed Central  Google Scholar 

  16. Horvát S, Gămănuţ R, Ercsey-Ravasz M, Magrou L, GăăuțB, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaas JH (2000) Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1:7–23

    Article  Google Scholar 

  18. Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB (2017) A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95:1420–1432.e5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Liewald D, Miller R, Logothetis N, Wagner H-J, Schüz A (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liska A, Galbusera A, Schwarz AJ, Gozzi A (2015) Functional connectivity hubs of the mouse brain. Neuroimage 115:281–291

    Article  PubMed  Google Scholar 

  22. Lund JS, Yoshioka T, Levitt JB (1993) Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cereb Cortex 3:148–162

    CAS  Article  PubMed  Google Scholar 

  23. Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamada K, Ota K, Matsubara C, Inutsuka A, Sato M, Ohkura M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME, Murayama M (2015) A top-down cortical circuit for accurate sensory perception. Neuron 86:1304–1316

    CAS  Article  PubMed  Google Scholar 

  24. Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272

    CAS  Article  PubMed  Google Scholar 

  25. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014a) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259

    Article  PubMed  Google Scholar 

  26. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, Misery P, Falchier A, Quilodran R, Gariel MA, Sallet J, Gamanut R, Huissoud C, Clavagnier S, Giroud P, Sappey-Marinier D, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2014b) A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex 24(1):17–36

    CAS  Article  PubMed  Google Scholar 

  27. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508:207–214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    CAS  Article  PubMed  Google Scholar 

  29. Paxinos G (2014) The rat nervous system, fourth edition. Academic, New York

    Google Scholar 

  30. Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Elsevier, Amsterdam

    Google Scholar 

  31. Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P (2012) Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9:255–258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38:1–6

    CAS  Article  PubMed  Google Scholar 

  33. Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    CAS  Article  PubMed  Google Scholar 

  34. Schüz A, Chaimow D, Liewald D, Dortenman M (2006) Quantitative aspects of corticocortical connections: a tracer study in the mouse. Cereb Cortex 16:1474–1486

    Article  PubMed  Google Scholar 

  35. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J-I, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79

    CAS  Article  Google Scholar 

  36. Vanni MP, Chan AW, Balbi M, Silasi G, Murphy TH (2017) Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. J Neurosci 37:7513–7533

    CAS  Article  PubMed  Google Scholar 

  37. Wang Q, Burkhalter A (2007) Area map of mouse visual cortex. J Comp Neurol 502:339–357

    Article  PubMed  Google Scholar 

  38. Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD (2008) Functional trade-offs in white matter axonal scaling. J Neurosci 28:4047–4056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Q, Sporns O, Burkhalter A (2012) Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J Neurosci 32:4386–4399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Watakabe A, Hirokawa J, Ichinohe N, Ohsawa S, Kaneko T, Rockland KS, Yamamori T (2012) Area-specific substratification of deep layer neurons in the rat cortex. J Comp Neurol 520:3553–3573

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T (2014) Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circ 8:110

    Google Scholar 

  42. Zhang ZW, Deschêes M (1997) Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study. J Neurosci 17:6365–6379

    CAS  Article  PubMed  Google Scholar 

  43. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci USA 97:5621–5626

    CAS  Article  PubMed  Google Scholar 

  44. Zhang S, Xu M, Chang W-C, Ma C, Hoang Do JP, Jeong D, Lei T, Fan JL, Dan Y (2016) Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 19:1733–1742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong H-W (2014) Neural networks of the mouse neocortex. Cell 156:1096–1111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akiya Watakabe.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Watakabe, A., Hirokawa, J. Cortical networks of the mouse brain elaborate within the gray matter. Brain Struct Funct 223, 3633–3652 (2018). https://doi.org/10.1007/s00429-018-1710-5

Download citation

Keywords

  • AAV
  • Anterograde tracers
  • Cortico-cortical projection
  • Feedforward
  • Feedback
  • White matter