Skip to main content
Log in

Decreased hippocampal cell proliferation in mice with experimental antiphospholipid syndrome

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of antiphospholipid antibodies, which may trigger vascular thrombosis with consecutive infarcts. However, cognitive dysfunctions representing one of the most commonest neuropsychiatric symptoms are frequently present despite the absence of any ischemic brain lesions. Data on the structural and functional basis of the neuropsychiatric symptoms are sparse. To examine the effect of APS on hippocampal neurogenesis and on white matter, we induced experimental APS (eAPS) in adult female Balb/C mice by immunization with β2-glycoprotein 1. To investigate cell proliferation in the dentate gyrus granular cell layer (DG GCL), eAPS and control mice (n = 5, each) were injected with 5-bromo-2′-deoxyuridine (BrdU) once a day for 10 subsequent days. Sixteen weeks after immunization, eAPS resulted in a significant reduction of BrdU-positive cells in the DG GCL compared to control animals. However, double staining with doublecortin and NeuN revealed a largely preserved neurogenesis. Ultrastructural analysis of corpus callosum (CC) axons in eAPS (n = 6) and control mice (n = 7) revealed no significant changes in CC axon diameter or g-ratio. In conclusion, decreased cellular proliferation in the hippocampus of eAPS mice indicates a limited regenerative potential and may represent one neuropathological substrate of cognitive changes in APS while evidence for alterations of white matter integrity is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

aCL:

Anti-cardiolipin antibodies

aPL:

Antiphospholipid antibodies

APS:

Antiphospholipid syndrome

BBB:

Blood–brain barrier

BrdU:

5-Bromo-2′-deoxyuridine

BSA:

Bovine serum albumin

CA:

Cornu ammonis

CNS:

Central nervous system

CC:

Corpus callosum

CFA:

Complete Freund’s adjuvant

DCX:

Doublecortin

DG GCL:

Dentate gyrus granular cell layer

EAE:

Experimental autoimmune encephalomyelitis

eAPS:

Experimental antiphospholipid syndrome

LPS:

Lipopolysaccharide

NGS:

Normal goat serum

OD:

Optical density

PBS:

Phosphate buffered saline

PFA:

Paraformaldehyde

RT:

Room temperature

SEM:

Standard error of mean

SLE:

Systemic lupus erythematosus

SSC:

Saline-sodium citrate

TBS:

Tris-buffered saline

TBS-T:

TBS with Triton X-100

WM:

White matter

References

  • Alenina N, Klempin F (2015) The role of serotonin in adult hippocampal neurogenesis. Behav Brain Res 277:49–57

    Article  CAS  Google Scholar 

  • Bakimer R, Fishman P, Blank M, Sredni B, Djaldetti M, Shoenfeld Y (1992) Induction of primary antiphospholipid syndrome in mice by immunization with a human monoclonal anticardiolipin antibody (H-3). J Clin Invest 89:1558–1563

    Article  CAS  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the DG and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  CAS  Google Scholar 

  • Bastos GN, Moriya T, Inui F, Katura T, Nakahata N (2008) Involvement of cyclooxygenase-2 in lipopolysaccharide-induced impairment of the newborn cell survival in the adult mouse dentate gyrus. Neuroscience 155:454–462

    Article  CAS  Google Scholar 

  • Cervera R, Khamashta MA, Shoenfeld Y, Camps MT, Jacobsen S, Kiss E et al (2009) Morbidity and mortality in the antiphospholipid syndrome during a 5-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis 68:1428–1432

    Article  CAS  Google Scholar 

  • Cervera R, Serrano R, Pons-Estel GJ, Ceberio-Hualde L, Shoenfeld Y, de Ramón E et al (2015) Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients. Ann Rheum Dis 74:1011–1018

    Article  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences 2. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Conti F, Alessandri C, Perricone C, Scrivo R, Rezai S, Ceccarelli F et al (2012) Neurocognitive dysfunction in systemic lupus erythematosus: association with antiphospholipid antibodies, disease activity and chronic damage. PLoS One 7:e33824

    Article  CAS  Google Scholar 

  • Denenberg VH, Sherman GF, Rosen GD, Morrison L, Behan PO, Galaburda AM (1992) A behavior profile of the MRL/Mp lpr/lpr mouse and its association with hydrocephalus. Brain Behav Immun 6:40–49

    Article  CAS  Google Scholar 

  • Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming GL, Overstreet-Wadiche LS (2008) Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci 28:11785–11791

    Article  CAS  Google Scholar 

  • Filley CM (2010) White matter: organization and functional relevance. Neuropsychol Rev 20:158–173

    Article  Google Scholar 

  • Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ (2013) Neurological impairment in experimental antiphospholipid syndrome is associated with increased ligand binding to hippocampal and cortical serotonergic 5-HT1A receptors. Immunobiology 218:517–526

    Article  Google Scholar 

  • Frauenknecht K, Katzav A, Grimm C, Chapman J, Sommer CJ (2014) Altered receptor binding densities in experimental antiphospholipid syndrome despite only moderately enhanced autoantibody levels and absence of behavioral features. Immunobiology 219:341–349

    Article  CAS  Google Scholar 

  • Frauenknecht K, Katzav A, Weiss Lavi R, Sabag A, Otten S, Chapman J et al (2015) Mice with experimental antiphospholipid syndrome display hippocampal dysfunction and a reduction of dendritic complexity in hippocampal CA1 neurones. Neuropathol Appl Neurobiol 41:657–671

    Article  CAS  Google Scholar 

  • Fujioka H, Akema T (2010) Lipopolysaccharide acutely inhibits proliferation of neural precursor cells in the dentate gyrus in adult rats. Brain Res 1352:35–42

    Article  CAS  Google Scholar 

  • Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265

    Article  CAS  Google Scholar 

  • Huehnchen P, Prozorovski T, Klaissle P, Lesemann A, Ingwersen J, Wolf SA et al (2011) Modulation of adult hippocampal neurogenesis during myelin-directed autoimmune neuroinflammation. Glia 59:132–142

    Article  Google Scholar 

  • Jacobson MW, Rapport LJ, Keenan PA, Coleman RD, Tietjen GE (1999) Neuropsychological deficits associated with antiphospholipid antibodies. J Clin Exp Neuropsychol 21:251–264

    Article  CAS  Google Scholar 

  • Kaichi Y, Kakeda S, Moriya J, Ohnari N, Saito K, Tanaka Y et al (2014) Brain MR findings in patients with systemic lupus erythematosus with and without antiphospholipid antibody syndrome. AJNR 35:100–105

    Article  CAS  Google Scholar 

  • Kapadia M, Stanojcic M, Earls AM, Pulapaka S, Lee J, Sakic B (2012) Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res 234:303–311

    Article  Google Scholar 

  • Katzav A, Menachem A, Maggio N, Pollak L, Pick CG, Chapman J (2014) IgG accumulates in inhibitory hippocampal neurons of experimental antiphospholipid syndrome. J Autoimmun 55:86–93

    Article  CAS  Google Scholar 

  • Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult Hippocampus. Cold Spring Harb Perspect Biol 7:a018812

    Article  Google Scholar 

  • Kim A, Feng P, Ohkuri T, Sauers D, Cohn ZJ, Chai J et al (2012) Defects in the peripheral taste structure and function in the MRL/lpr mouse model of autoimmune disease. PLoS One 7:e35588

    Article  CAS  Google Scholar 

  • Klempin F, Babu H, de Pietri Tonelli D, Alarcon E, Fabel K, Kempermann G (2010) Oppositional effects of serotonin receptors 5-HT1a, 2, and 2c in the regulation of adult hippocampal neurogenesis. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2010.00014

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463

    Article  Google Scholar 

  • Ma X, Foster J, Sakic B (2006) Distribution and prevalence of leukocyte phenotypes in brains of lupus-prone mice. J Neuroimmunol 179:26–36

    Article  CAS  Google Scholar 

  • Mandyam CD, Harburg GC, Eisch AJ (2007) Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 146:108–122

    Article  CAS  Google Scholar 

  • Nakagawa E, Aimi Y, Yasuhara O, Tooyama I, Shimada M, McGeer PL et al (2000) Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbic seizures in rat models of epilepsy. Epilepsia 41:10–18

    Article  CAS  Google Scholar 

  • Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH (2006) Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 59:81–91

    Article  Google Scholar 

  • Penke L, Maniega SM, Bastin ME, Valdés Hernández MC, Murray C, Royle NA et al (2012) Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17:1026–1030

    Article  CAS  Google Scholar 

  • Pereira FR, Macri F, Jackowski MP, Kostis WJ, Gris JC, Beregi JP et al (2016) Diffusion tensor imaging in patients with obstetric antiphospholipid syndrome without neuropsychiatric symptoms. Eur Radiol 4:959–968

    Google Scholar 

  • Pick CG, Peter Y, Terkel J, Gavish M, Weizman R (1996) Effect of the neuroactive steroid alpha-THDOC on staircase test behavior in mice. Psychopharmacology 128:61–66

    Article  CAS  Google Scholar 

  • Radley JJ, Jacobs BL (2002) 5-HT1A receptor antagonist administration decreases cell proliferation in the DG. Brain Res 955:264–267

    Article  CAS  Google Scholar 

  • Sakic B, Szechtman H, Denburg JA, Gorny G, Kolb B, Whishaw IQ (1998) Progressive atrophy of pyramidal neuron dendrites in autoimmune MRL-lpr mice. J Neuroimmunol 87:162–170

    Article  CAS  Google Scholar 

  • Sakic B, Kolb B, Whishaw IQ, Gorny G, Szechtman H, Denburg JA (2000) Immunosuppression prevents neuronal atrophy in lupus-prone mice: evidence for brain damage induced by autoimmune disease? J Neuroimmunol 111:93–101

    Article  CAS  Google Scholar 

  • Shrot S, Katzav A, Korczyn AD, Litvinju Y, Hershenson R, Pick CG et al (2002) Behavioral and cognitive deficits occur only after prolonged exposure of mice to antiphospholipid antibodies. Lupus 11:736–743

    Article  Google Scholar 

  • Simiand J, Keane PE, Morre M (1984) The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology 84:48–53

    Article  CAS  Google Scholar 

  • Sled JG, Spring S, van Eede M, Lerch JP, Ullal S, Sakic B (2009) Time course and nature of brain atrophy in the MRL mouse model of central nervous system lupus. Arthritis Rheum 60:1764–1774

    Article  Google Scholar 

  • Sokol DK, O’Brien RS, Wagenknecht DR, Rao T, McIntyre JA (2007) Antiphospholipid antibodies in blood and cerebrospinal fluids of patients with psychosis. J Neuroimmunol 190:151–156

    Article  CAS  Google Scholar 

  • Stanojcic M, Burstyn-Cohen T, Nashi N, Lemke G, Sakic B (2009) Disturbed distribution of proliferative brain cells during lupus-like disease. Brain Behav Immun 23:1003–1013

    Article  CAS  Google Scholar 

  • Stojanovich L, Kontic M, Smiljanic D, Djokovic A, Stamenkovic B, Marisavljevic D (2013) Association between non-thrombotic neurological and cardiac manifestations in patients with antiphospholipid syndrome. Clin Exp Rheumatol 31:756–760

    PubMed  Google Scholar 

  • Tektonidou MG, Varsou N, Kotoulas G, Antoniou A, Moutsopoulos HM (2006) Cognitive deficits in patients with antiphospholipid syndrome: association with clinical, laboratory, and brain magnetic resonance imaging finding. Arch Int Med 166:2278–2284

    Article  Google Scholar 

  • Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815

    Article  CAS  Google Scholar 

  • Ueda S, Sakakibara S, Yoshimoto K (2005) Effect of long-lasting serotonin depletion on environmental enrichment-induced neurogenesis in adult rat hippocampus and spatial learning. Neuroscience 135:395–402

    Article  CAS  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    Article  CAS  Google Scholar 

  • Valdés-Ferrer SI, Vega F, Cantú-Brito C, Ceballos-Ceballos J, Estañol B, García-Ramos G et al (2008) Cerebral changes in SLE with or without antiphospholipid syndrome: a case–control MRI study. J Neuroimaging 18:62–65

    Article  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  Google Scholar 

  • Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse DG receives synaptic GABAergic input. Mol Cell Neurosci 29:181–189

    Article  CAS  Google Scholar 

  • Yelnik CM, Kozora E, Appenzeller S (2016a) Cognitive disorders and antiphospholipid antibodies. Autoimmun Rev 15:1193–1198

    Article  CAS  Google Scholar 

  • Yelnik CM, Kozora E, Appenzeller S (2016b) Non-stroke central neurological manifestations in antiphospholipid syndrome. Curr Rheumatol Rep (2016) 18:11

    Article  Google Scholar 

Download references

Acknowledgements

The technical expertise of Magdeleine Herkt and Nicole Roder is kindly acknowledged. The authors are grateful to Professor Elisabeth Jane Rushing (University Hospital Zurich, Switzerland) for critically reading the manuscript.

Funding

The present work was supported by grants from the MAIFOR program (intramural funding, Medical Center of the Johannes Gutenberg University Mainz, Germany) from the Chief Scientist in the Israel Ministry of Health and from Israel Science Foundation. Katrin Frauenknecht is the recipient of a Career Development Award by the Stavros Niarchos Foundation (https://www.snf.org/22474).

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: KF, AK, CJS; animal experiments: AK, RW; histology/volumetry/morphometric studies: KF, PL, HDP; figures: KF, PL, HDP; manuscript KF, PL, JC, CJS. All authors read and approved the final manuscript. The authors declare no competing interests.

Corresponding author

Correspondence to Katrin Frauenknecht.

Ethics declarations

Ethical approval

Animal experiments have been approved Israeli Health Ministry (Ethical approval no. 775/12) and by the Chaim Sheba Medical Center Animal Welfare Committee. All experiments were in accordance with national and international guidelines and regulations. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frauenknecht, K., Leukel, P., Weiss, R. et al. Decreased hippocampal cell proliferation in mice with experimental antiphospholipid syndrome. Brain Struct Funct 223, 3463–3471 (2018). https://doi.org/10.1007/s00429-018-1699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1699-9

Keywords

Navigation