Skip to main content

Early asymmetric inter-hemispheric transfer in the auditory network: insights from infants with corpus callosum agenesis

Abstract

The left hemisphere specialization for language is a well-established asymmetry in the human brain. Structural and functional asymmetries are observed as early as the prenatal period suggesting genetically determined differences between both hemispheres. The corpus callosum is a large tract connecting mostly homologous areas; some have proposed that it might participate in an enhancement of the left-hemispheric advantage to process speech. To investigate its role in early development, we compared 13 3–4-month-old infants with an agenesis of the corpus callosum (“AgCC”) with 18 typical infants using high-density electroencephalography in an auditory task. We recorded event-related potentials for speech stimuli (syllables and babbling noise), presented binaurally (same syllable in both ears), monaurally (babbling noise in one ear) and dichotically (syllable in one ear and babbling noise in the other ear). In response to these stimuli, both groups developed an anterior positivity synchronous with a posterior negativity, yet the topography significantly differed between groups likely due to the atypical gyration of the medial surface in AgCC. In particular, the anterior positivity was lateral in AgCC infants while it covered the midline in typical infants. We then measured the latencies of the main auditory response (P2 at this age) for the different conditions on the symmetrical left and right clusters. The main difference between groups was a ~ 60 ms delay in typical infants relative to AgCC, for the ipsilateral response (i.e. left hemisphere) to babbling noise presented in the left ear, whereas no difference was observed in the case of right-ear stimulation. We suggest that our results highlight an asymmetrical callosal connectivity favoring the right-to-left hemisphere direction in typical infants. This asymmetry, similar to recent descriptions in adults, might contribute to an enhancement of left lateralization for language processing beyond the initial cortical left-hemisphere advantage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598(1):143–153

    Article  CAS  PubMed  Google Scholar 

  • Adibpour P, Dubois J, Dehaene-Lambertz G (2018) Right but not left hemispheric discrimination of faces in infancy. Nat Hum Behav 2:67–79

    Article  Google Scholar 

  • Andoh J, Matsushita R, Zatorre RJ (2015) Asymmetric interhemispheric transfer in the auditory network: evidence from TMS, resting-state fMRI, and diffusion imaging. J Neurosci 35(43):14602–14611

    Article  CAS  PubMed  Google Scholar 

  • Bates E, Vicari S, Trauner D (1999) Neural mediation of language development: perspectives from lesion studies of infants and children. In: Tager-Flusberg H (ed) Developmental cognitive neuroscience. Neurodevelopmental disorders. The MIT Press, Cambridge, MA, US, pp 533–581

    Google Scholar 

  • Bedeschi MF, Bonaglia MC, Grasso R, Pellegri A, Garghentino RR, Battaglia MA, Bresolin N (2006) Agenesis of the corpus callosum: clinical and genetic study in 63 young patients. Pediatric Neurol 34(3):186–193

    Article  Google Scholar 

  • Bénézit A, Hertz-Pannier L, Dehaene-Lambertz G, Monzalvo K, Germanaud D, Duclap D, Moutard M-L (2015) Organising white matter in a brain without corpus callosum fibres. Cortex 63:155–171

    Article  PubMed  Google Scholar 

  • Bonneau D, Toutain A, Laquerriere A, Marret S, Saugier-Veber P, Barthez MA, Gélot A (2002) X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 51(3):340–349

    Article  PubMed  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46(3):283–301

    Article  CAS  PubMed  Google Scholar 

  • Caminiti R, Ghaziri H, Galuske R, Hof PR, Innocenti GM (2009) Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc Natl Acad Sci USA 106(46):19551–19556. https://doi.org/10.1073/pnas.0907655106

    Article  PubMed  Google Scholar 

  • Chiarello C (1980) A house divided? Cognitive functioning with callosal agenesis. Brain Lang 11(1):128–158

    Article  CAS  PubMed  Google Scholar 

  • Cook ND (1984) Homotopic callosal inhibition. Brain Lang 23(1):116–125

    Article  CAS  PubMed  Google Scholar 

  • de Schonen, Mathivet E (1990) Hemispheric asymmetry in a face discrimination task in infants. Child Dev 61(4):1192–1205

    Article  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S (1994) Speed and cerebral correlates of syllable discrimination in infants. Nature 370(6487):292

    Article  CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298(5600):2013–2015

    Article  CAS  PubMed  Google Scholar 

  • Dehaene-Lambertz G, Pena M, Christophe A, Landrieu P (2004) Phoneme perception in a neonate with a left sylvian infarct. Brain Lang 88(1):26–38

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Dennis M (1981) Language in a congenitally acallosal brain. Brain Lang 12(1):33–53

    Article  CAS  PubMed  Google Scholar 

  • Dubois J, Hertz-Pannier L, Cachia A, Mangin J, Le Bihan D, Dehaene-Lambertz G (2009) Structural asymmetries in the infant language and sensori-motor networks. Cereb Cortex 19(2):414–423

    Article  CAS  PubMed  Google Scholar 

  • Dubois J, Benders M, Lazeyras F, Borradori-Tolsa C, Leuchter RH-V, Mangin J-F, Hüppi PS (2010) Structural asymmetries of perisylvian regions in the preterm newborn. Neuroimage 52(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Dubois J, Poupon C, Thirion B, Simonnet H, Kulikova S, Leroy F, Dehaene-Lambertz G (2016) Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cereb Cortex 26(5):2283–2298

    Article  PubMed  Google Scholar 

  • Evrard SG, Vega MD, Ramos AJ, Tagliaferro P, Brusco A (2003) Altered neuron–glia interactions in a low, chronic prenatal ethanol exposure. Dev Brain Res 147(1):119–133

    Article  CAS  Google Scholar 

  • Glasel H, Leroy F, Dubois J, Hertz-Pannier L, Mangin J-F, Dehaene-Lambertz G (2011) A robust cerebral asymmetry in the infant brain: the rightward superior temporal sulcus. Neuroimage 58(3):716–723

    Article  CAS  PubMed  Google Scholar 

  • Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci USA 110(36):E3435–E3444. https://doi.org/10.1073/pnas.1302581110

    Article  PubMed  Google Scholar 

  • Guillem P, Fabre B, Cans C, Robert-Gnansia E, Jouk P (2003) Trends in elective terminations of pregnancy between 1989 and 2000 in a French county (the Isere). Prenat Diagn 23(11):877–883

    Article  CAS  PubMed  Google Scholar 

  • Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, Studholme C (2012) Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex 22(1):13–25. https://doi.org/10.1093/cercor/bhr053

    Article  PubMed  Google Scholar 

  • Hinkley LB, Marco EJ, Brown EG, Bukshpun P, Gold J, Hill S, Findlay AM, Jeremy RJ, Wakahiro ML, James Barkovich A, Mukherjee P, Sherr EH, Nagarajan SS (2016) The contribution of the corpus callosum to language lateralization. J Neurosci 36(16):4522–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Sensory-motor areas and aspects of cortical connectivity. Springer, Boston, MA, pp 291–353

    Chapter  Google Scholar 

  • Jeeves M, Temple C (1987) A further study of language function in callosal agenesis. Brain Lang 32(2):325–335

    Article  CAS  PubMed  Google Scholar 

  • Karbe H, Herholz K, Halber M, Heiss WD (1998) Collateral inhibition of transcallosal activity facilitates functional brain asymmetry. J Cereb Blood Flow Metab 18(10):1157–1161. https://doi.org/10.1097/00004647-199810000-00012

    Article  CAS  PubMed  Google Scholar 

  • Komaba Y, Senda M, Mori T, Ishii K, Mishina M, Kitamura S, Terashi A (1998) Bilateral representation of language function. J Neuroimaging 8(4):246–249

    Article  CAS  PubMed  Google Scholar 

  • Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. In: Paper presented at the seminars in fetal and neonatal medicine

  • Kouider S, Dupoux E (2005) Subliminal speech priming. Psychol Sci 16(8):617–625

    Article  PubMed  Google Scholar 

  • Krumbholz K, Hewson-Stoate N, Schönwiesner M (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J Neurophysiol 97(2):1649–1655

    Article  PubMed  Google Scholar 

  • Leroy F, Glasel H, Dubois J, Hertz-Pannier L, Thirion B, Mangin J-F, Dehaene-Lambertz G (2011) Early maturation of the linguistic dorsal pathway in human infants. J Neurosci 31(4):1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Liégeois F, Bentejac L, de Schonen S (2000) When does inter-hemispheric integration of visual events emerge in infancy? A developmental study on 19- to 28-month-old infants. Neuropsychologia 38(10):1382–1389

    Article  PubMed  Google Scholar 

  • Mahmoudzadeh M, Dehaene-Lambertz G, Fournier M, Kongolo G, Goudjil S, Dubois J, Wallois F (2013) Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proc Natl Acad Sci 110(12):4846–4851

    Article  PubMed  Google Scholar 

  • Majkowski J, Bochenek Z, Bochenek W, Knapik-Fijałkowska D, Kopeć J (1971) Latency of averaged evoked potentials to contralateral and ipsilateral auditory stimulation in normal subjects. Brain Res 25(2):416–419

    Article  CAS  PubMed  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • Ortiz-Mantilla S, Hämäläinen JA, Benasich AA (2012) Time course of ERP generators to syllables in infants: a source localization study using age-appropriate brain templates. Neuroimage 59(4):3275–3287

    Article  PubMed  Google Scholar 

  • Pallier C, Dupoux E, Jeannin X (1997) EXPE: an expandable programming language for on-line psychological experiments. Behav Res Methods 29(3):322–327

    Article  Google Scholar 

  • Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8(4):287–299

    Article  PubMed  Google Scholar 

  • Pelletier I, Paquette N, Lepore F, Rouleau I, Sauerwein CH, Rosa C, Lassonde M (2011) Language lateralization in individuals with callosal agenesis: an fMRI study. Neuropsychologia 49(7):1987–1995. https://doi.org/10.1016/j.neuropsychologia.2011.03.028

    Article  PubMed  Google Scholar 

  • Pena M, Maki A, Kovac̆ić D, Dehaene-Lambertz G, Koizumi H, Bouquet F, Mehler J (2003). Sounds and silence: an optical topography study of language recognition at birth. Proc Natl Acad Sci 100(20):11702–11705

    Article  CAS  PubMed  Google Scholar 

  • Riecker A, Ackermann H, Schmitz B, Kassubek J, Herrnberger B, Steinbrink C (2007) Bilateral language function in callosal agenesis. J Neurol 254(4):528–530

    Article  CAS  PubMed  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex 4(4):331–343

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig MR (1951) Representations of the two ears at the auditory cortex. Am J Physiol Leg Content 167(1):147–158

    Article  CAS  Google Scholar 

  • Sann C, Streri A (2007) Perception of object shape and texture in human newborns: evidence from cross-modal transfer tasks. Dev Sci 10(3):399–410

    Article  PubMed  Google Scholar 

  • Sanders RJ (1989) Sentence comprehension following agenesis of the corpus callosum. Brain Lang 37(1):59–72

    Article  CAS  PubMed  Google Scholar 

  • Saron CD, Davidson RJ (1989) Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci 103(5):1115

    Article  CAS  PubMed  Google Scholar 

  • Selnes OA (1974) The corpus callosum: Some anatomical and functional considerations with special reference to language. Brain Lang 1(2):111–139

    Article  Google Scholar 

  • Shultz S, Vouloumanos A, Bennett RH, Pelphrey K (2014) Neural specialization for speech in the first months of life. Dev Sci 17(5):766–774

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:8

    Article  Google Scholar 

  • Tamè L, Longo MR (2015) Inter-hemispheric integration of tactile-motor responses across body parts. Front Hum Neurosci 9:345

    PubMed  PubMed Central  Google Scholar 

  • Temple C, Ilsleya J (1993) Phonemic discrimination in callosal agenesis. Cortex 29(2):341–348

    Article  CAS  PubMed  Google Scholar 

  • Temple C, Jeeves M, Vilarroya O (1989) Ten pen men: rhyming skills in two children with callosal agenesis. Brain Lang 37(4):548–564

    Article  CAS  PubMed  Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Van Essen DC (2005) A population-average, landmark-and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28(3):635–662

    Article  PubMed  Google Scholar 

  • Whitford TJ, Kubicki M, Ghorashi S, Schneiderman JS, Hawley KJ, McCarley RW, Spencer KM (2011) Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. Neuroimage 54(3):2318–2329

    Article  PubMed  Google Scholar 

  • Wunderlich JL, Cone-Wesson BK (2006) Maturation of CAEP in infants and children: a review. Hear Res 212(1):212–223

    Article  PubMed  Google Scholar 

  • Yakovlev, Lecours (1967) The myelogenetic cycles of regional maturation in the brain. Blackwell, Oxford

    Google Scholar 

  • Yazgan MY, Wexler BE, Kinsbourne M, Peterson B, Leckman JF (1995) Functional significance of individual variations in callosal area. Neuropsychologia 33(6):769–779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the infants and their parents who participated in this study. We are also grateful to Claire Kabdebon for her help in EEG analyses and Eric Moulton for proofreading the text.

Funding

This research was supported by grants from the Fondation de France (to J. D and G. DL), NRJ-Institut de France (to G. D-L) and European Research Council (BabyLearn grant to G. D-L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaneh Adibpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all infants’ parents included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1025 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adibpour, P., Dubois, J., Moutard, ML. et al. Early asymmetric inter-hemispheric transfer in the auditory network: insights from infants with corpus callosum agenesis. Brain Struct Funct 223, 2893–2905 (2018). https://doi.org/10.1007/s00429-018-1667-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1667-4

Keywords

  • Corpus callosum
  • Corpus callosum agenesis
  • Brain development
  • Electroencephalography EEG
  • Auditory network
  • Asymmetry
  • Inter-hemispheric transfer
  • Language
  • Brain specialization