When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity

  • Dogu Baran Aydogan
  • Russell Jacobs
  • Stephanie Dulawa
  • Summer L. Thompson
  • Maite Christi Francois
  • Arthur W. Toga
  • Hongwei Dong
  • James A. Knowles
  • Yonggang Shi
Original Article

Abstract

Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent developments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractography relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hindering the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these factors. For this purpose, we performed over a million tractography experiments and studied the variability across different subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all tractography parameters are significant and importantly performance variations with respect to the differences in subjects are comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints is the most significant factor for improving tractography performance. Although this critical factor helps reduce false positives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.

Keywords

Tractography Validation ANOVA Mouse Connectome 

Notes

Acknowledgements

This work was supported by the National Institute of Health (NIH) under Grants R01EB022744, K01EB013633, P41EB015922, P50AG005142, U01EY025864 and U01AG051218.

Compliance with ethical standards

Statement on the welfare of animals

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2018_1663_MOESM1_ESM.docx (4.4 mb)
Supplementary material 1 (DOCX 4546 KB)

References

  1. Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N (2010) Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle. Magn Reson Med 64(2):554–566PubMedPubMedCentralGoogle Scholar
  2. Albi A, Meola A, Zhang F, Kahali P, Rigolo L, Tax CMW, Ciris PA, Essayed WI, Unadkat P, Norton I, Rathi Y, Olubiyi O, Golby AJ, O’Donnell LJ (2018) Image registration to compensate for EPI distortion in patients with brain tumors: an evaluation of tract-specific effects. J Neuroimag.  https://doi.org/10.1111/jon.12485 Google Scholar
  3. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044CrossRefPubMedGoogle Scholar
  4. Aydogan DB, Shi Y (2016) Probabilistic tractography for topographically organized connectomes. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical image computing and computer-assisted intervention—MICCAI 2016: 19th international conference, Athens, Greece, October 17–21, 2016, Proceedings, Part I. Springer International Publishing, Cham, pp 201–209.  https://doi.org/10.1007/978-3-319-46720-7_24 Google Scholar
  5. Azadbakht H, Parkes LM, Haroon HA, Augath M, Logothetis NK, de Crespigny A, D’Arceuil HE, Parker GJ (2015) Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex. Cereb Cortex 25(11):4299–4309.  https://doi.org/10.1093/cercor/bhu326 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bach M, Fritzsche KH, Stieltjes B, Laun FB (2014) Investigation of resolution effects using a specialized diffusion tensor phantom. Magn Reson Med 71(3):1108–1116CrossRefPubMedGoogle Scholar
  7. Barazany D, Basser PJ, Assaf Y (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 132(Pt 5):1210–1220.  https://doi.org/10.1093/brain/awp042 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267.  https://doi.org/10.1016/s0006-3495(94)80775-1 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632CrossRefPubMedGoogle Scholar
  10. Benson NC, Butt OH, Datta R, Radoeva PD, Brainard DH, Aguirre GK (2012) The retinotopic organization of striate cortex is well predicted by surface topology. Curr Biol 22(21):2081–2085.  https://doi.org/10.1016/j.cub.2012.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Besseling RM, Jansen JF, Overvliet GM, Vaessen MJ, Braakman HM, Hofman PA, Aldenkamp AP, Backes WH (2012) Tract specific reproducibility of tractography based morphology and diffusion metrics. PloS one 7(4):e34125CrossRefPubMedPubMedCentralGoogle Scholar
  12. Budde MD, Janes L, Gold E, Turtzo LC, Frank JA (2011) The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. Brain 134(Pt 8):2248–2260.  https://doi.org/10.1093/brain/awr161 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA (2015) A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cereb Cortex 25:bhv121CrossRefGoogle Scholar
  14. Calamante F, Tournier J-D, Kurniawan ND, Yang Z, Gyengesi E, Galloway GJ, Reutens DC, Connelly A (2012) Super-resolution track-density imaging studies of mouse brain: comparison to histology. Neuroimage 59(1):286–296CrossRefPubMedGoogle Scholar
  15. Campbell JS, Savadjiev P, Siddiqi K, Pike GB (2006) Validation and regularization in diffusion MRI tractography. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. IEEE, pp 351–354Google Scholar
  16. Caruyer E, Lenglet C, Sapiro G, Deriche R (2013) Design of multishell sampling schemes with uniform coverage in diffusion MRI. Magn Reson Med 69(6):1534–1540.  https://doi.org/10.1002/mrm.24736 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen H, Liu T, Zhao Y, Zhang T, Li Y, Li M, Zhang H, Kuang H, Guo L, Tsien JZ (2015a) Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data. NeuroImage 115:202–213CrossRefPubMedPubMedCentralGoogle Scholar
  18. Chen H, Liu T, Zhao Y, Zhang T, Li Y, Li M, Zhang H, Kuang H, Guo L, Tsien JZ, Liu T (2015b) Optimization of large-scale mouse brain connectome via joint evaluation of DTI and neuron tracing data. NeuroImage 115:202–213.  https://doi.org/10.1016/j.neuroimage.2015.04.050 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cheng J, Deriche R, Jiang T, Shen D, Yap P-T (2014) Non-negative spherical deconvolution (NNSD) for estimation of fiber orientation distribution function in single-/multi-shell diffusion MRI. NeuroImage 101:750–764.  https://doi.org/10.1016/j.neuroimage.2014.07.062 CrossRefPubMedGoogle Scholar
  20. Cote MA, Girard G, Bore A, Garyfallidis E, Houde JC, Descoteaux M (2013) Tractometer: towards validation of tractography pipelines. Med Image Anal 17(7):844–857.  https://doi.org/10.1016/j.media.2013.03.009 CrossRefPubMedGoogle Scholar
  21. Daducci A, Dal Palù A, Lemkaddem A, Thiran J-P (2015) COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34(1):246–257CrossRefPubMedGoogle Scholar
  22. Daianu M, Jahanshad N, Villalon-Reina JE, Prasad G, Jacobs RE, Barnes S, Zlokovic BV, Montagne A, Thompson PM (2015) 7T multi-shell hybrid diffusion imaging (HYDI) for mapping brain connectivity in mice. Proc SPIE Int Soc Opt Eng 9413.  https://doi.org/10.1117/12.2081491
  23. Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R, Westin C-F (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37(2):530–538CrossRefPubMedGoogle Scholar
  24. Dice LR (1945) Measures of the Amount of Ecologic Association between Species. Ecology 26(3):297–302.  https://doi.org/10.2307/1932409 CrossRefGoogle Scholar
  25. Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, Dyrby TB, Coalson T, Kennedy H, Knoblauch K, Van Essen DC, Glasser MF (2016) Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. J Neurosci 36(25):6758–6770.  https://doi.org/10.1523/JNEUROSCI.0493-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dong HW (2007) Allen reference atlas: a digital color brain atlas of the C57BL/6J male mouse. Wiley, New YorkGoogle Scholar
  27. Dyrby TB, Søgaard LV, Parker GJ, Alexander DC, Lind NM, Baaré WF, Hay-Schmidt A, Eriksen N, Pakkenberg B, Paulson OB (2007) Validation of in vitro probabilistic tractography. Neuroimage 37(4):1267–1277CrossRefPubMedGoogle Scholar
  28. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 5(12):e15710.  https://doi.org/10.1371/journal.pone.0015710 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ferizi U, Schneider T, Panagiotaki E, Nedjati-Gilani G, Zhang H, Wheeler-Kingshott CA, Alexander DC (2014) A ranking of diffusion MRI compartment models with in vivo human brain data. Magn Reson Med 72(6):1785–1792.  https://doi.org/10.1002/mrm.25080 CrossRefPubMedGoogle Scholar
  30. Fieremans E, De Deene Y, Delputte S, Özdemir MS, Achten E, Lemahieu I (2008) The design of anisotropic diffusion phantoms for the validation of diffusion weighted magnetic resonance imaging. Phys Med Biol 53(19):5405CrossRefPubMedGoogle Scholar
  31. Fillard P, Descoteaux M, Goh A, Gouttard S, Jeurissen B, Malcolm J, Ramirez-Manzanares A, Reisert M, Sakaie K, Tensaouti F (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56(1):220–234CrossRefPubMedGoogle Scholar
  32. Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278CrossRefPubMedGoogle Scholar
  33. Gyengesi E, Calabrese E, Sherrier MC, Johnson GA, Paxinos G, Watson C (2014) Semi-automated 3D segmentation of major tracts in the rat brain: comparing DTI with standard histological methods. Brain Struct Funct 219(2):539–550CrossRefPubMedGoogle Scholar
  34. Heiervang E, Behrens T, Mackay C, Robson M, Johansen-Berg H (2006) Between session reproducibility and between subject variability of diffusion MR and tractography measures. Neuroimage 33(3):867–877CrossRefPubMedGoogle Scholar
  35. Heilingoetter CL, Jensen MB (2016) Histological methods for ex vivo axon tracing: a systematic review. Neurol Res 38(7):561–569.  https://doi.org/10.1080/01616412.2016.1153820 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jbabdi S, Johansen-Berg H (2011) Tractography: where do we go from here? Brain Connect 1(3):169–183.  https://doi.org/10.1089/brain.2011.0033 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jbabdi S, Sotiropoulos SN, Savio AM, Grana M, Behrens TE (2012) Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med 68(6):1846–1855.  https://doi.org/10.1002/mrm.24204 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jbabdi S, Lehman JF, Haber SN, Behrens TE (2013) Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci 33(7):3190–3201CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jbabdi S, Sotiropoulos SN, Haber SN, Van Essen DC, Behrens TE (2015) Measuring macroscopic brain connections in vivo. Nat Neurosci 18(11):1546–1555.  https://doi.org/10.1038/nn.4134 CrossRefPubMedGoogle Scholar
  40. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790.  https://doi.org/10.1016/j.neuroimage.2011.09.015 CrossRefPubMedGoogle Scholar
  41. Jeurissen B, Tournier J-D, Dhollander T, Connelly A, Sijbers J (2014) Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103:411–426.  https://doi.org/10.1016/j.neuroimage.2014.07.061 CrossRefPubMedGoogle Scholar
  42. Kammen A, Law M, Tjan BS, Toga AW, Shi Y (2016) Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. Neuroimage 125:767–779.  https://doi.org/10.1016/j.neuroimage.2015.11.005 CrossRefPubMedGoogle Scholar
  43. Keifer OP, Gutman DA, Hecht EE, Keilholz SD, Ressler KJ (2015) A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. NeuroImage 105:53–66CrossRefPubMedGoogle Scholar
  44. Knösche TR, Anwander A, Liptrot M, Dyrby TB (2015) Validation of tractography: comparison with manganese tracing. Hum Brain Map 36(10):4116–4134CrossRefGoogle Scholar
  45. Kuan L, Li Y, Lau C, Feng D, Bernard A, Sunkin SM, Zeng H, Dang C, Hawrylycz M, Ng L (2015) Neuroinformatics of the allen mouse brain connectivity atlas. Methods 73:4–17CrossRefPubMedGoogle Scholar
  46. Leemans A, Sijbers J, Verhoye M, Van der Linden A, Van Dyck D (2005) Mathematical framework for simulating diffusion tensor MR neural fiber bundles. Magn Reson Med 53(4):944–953CrossRefPubMedGoogle Scholar
  47. Maier-Hein KH, Neher PF, Houde JC, Côté MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8(1):1349.  https://doi.org/10.1038/s41467-017-01285-x CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mangin J-F, Fillard P, Cointepas Y, Le Bihan D, Frouin V, Poupon C (2013) Toward global tractography. NeuroImage 80:290–296CrossRefPubMedGoogle Scholar
  49. MathWorks I (2012) MATLAB and statistics toolbox release 2012. The MathWorks. Inc, NatickGoogle Scholar
  50. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, Ugurbil K (2010) Multiband multislice GE-EPI at 7 T, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63(5):1144–1153.  https://doi.org/10.1002/mrm.22361 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mollink J, Kleinnijenhuis M, Cappellen van Walsum AV, Sotiropoulos SN, Cottaar M, Mirfin C, Heinrich MP, Jenkinson M, Pallebage-Gamarallage M, Ansorge O, Jbabdi S, Miller KL (2017) Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging. Neuroimage 157:561–574.  https://doi.org/10.1016/j.neuroimage.2017.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269CrossRefPubMedGoogle Scholar
  53. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR 29(4):632–641.  https://doi.org/10.3174/ajnr.A1051 CrossRefPubMedGoogle Scholar
  54. Neher PF, Laun FB, Stieltjes B, Maier-Hein KH (2014) Fiberfox: facilitating the creation of realistic white matter software phantoms. Magn Reson Med 72(5):1460–1470CrossRefPubMedGoogle Scholar
  55. Neher PF, Descoteaux M, Houde JC, Stieltjes B, Maier-Hein KH (2015) Strengths and weaknesses of state of the art fiber tractography pipelines—a comprehensive in-vivo and phantom evaluation study using Tractometer. Med Image Anal 26(1):287–305.  https://doi.org/10.1016/j.media.2015.10.011 CrossRefPubMedGoogle Scholar
  56. Nolte J (2009) The human brain: an introduction to its functional anatomy, 6th edn. Mosby/Elsevier, PhiladelphiaGoogle Scholar
  57. Novikov DS, Jespersen SN, Kiselev VG, Fieremans E (2016) Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation (ArXiv e-prints 1612) Google Scholar
  58. Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245(2):367–384.  https://doi.org/10.1148/radiol.2452060445 CrossRefPubMedGoogle Scholar
  59. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214.  https://doi.org/10.1038/nature13186 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC (2012) Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. NeuroImage 59(3):2241–2254.  https://doi.org/10.1016/j.neuroimage.2011.09.081 CrossRefPubMedGoogle Scholar
  61. Partadiredja G, Miller R, Oorschot DE (2003) The number, size, and type of axons in rat subcortical white matter on left and right sides: a stereological, ultrastructural study. J Neurocytol 32(9):1165–1179.  https://doi.org/10.1023/B:NEUR.0000021910.65920.41 CrossRefPubMedGoogle Scholar
  62. Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11(10):1058–1063CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pullens P, Roebroeck A, Goebel R (2010) Ground truth hardware phantoms for validation of diffusion-weighted MRI applications. J Magn Reson Imaging 32(2):482–488CrossRefPubMedGoogle Scholar
  64. Reisert M, Kiselev VG, Dihtal B, Kellner E, Novikov DS (2014) MesoFT: unifying diffusion modelling and fiber tracking. Med Image Comput Comput Assist Interv 17(Pt 3):201–208PubMedGoogle Scholar
  65. Rojkova K, Volle E, Urbanski M, Humbert F, Dell’Acqua F, de Schotten MT (2016) Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Struct Funct 221(3):1751–1766CrossRefPubMedGoogle Scholar
  66. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130(3):630–653CrossRefPubMedGoogle Scholar
  67. Seehaus AK, Roebroeck A, Chiry O, Kim D-S, Ronen I, Bratzke H, Goebel R, Galuske RA (2012) Histological validation of DW-MRI tractography in human postmortem tissue. Cereb Cortex 23:bhs036Google Scholar
  68. Sergejeva M, Papp EA, Bakker R, Gaudnek MA, Okamura-Oho Y, Boline J, Bjaalie JG, Hess A (2015) Anatomical landmarks for registration of experimental image data to volumetric rodent brain atlasing templates. J Neurosci Methods 240:161–169.  https://doi.org/10.1016/j.jneumeth.2014.11.005 CrossRefPubMedGoogle Scholar
  69. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67(5):1210–1224.  https://doi.org/10.1002/mrm.23097 CrossRefPubMedGoogle Scholar
  70. Shattuck DW, Leahy RM (2002) BrainSuite: an automated cortical surface identification tool. Med Image Anal 6(2):129–142CrossRefPubMedGoogle Scholar
  71. Smith RE, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62(3):1924–1938CrossRefPubMedGoogle Scholar
  72. Smith RE, Tournier J-D, Calamante F, Connelly A (2015) SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119:338–351CrossRefPubMedGoogle Scholar
  73. Sotiropoulos SN, Hernandez-Fernandez M, Vu AT, Andersson JL, Moeller S, Yacoub E, Lenglet C, Ugurbil K, Behrens TEJ, Jbabdi S (2016) Fusion in diffusion MRI for improved fibre orientation estimation: an application to the 3T and 7T data of the human connectome project. Neuroimage 134:396–409.  https://doi.org/10.1016/j.neuroimage.2016.04.014 CrossRefPubMedGoogle Scholar
  74. Thomas C, Frank QY, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci 111(46):16574–16579CrossRefGoogle Scholar
  75. Toga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn JD (2012) Mapping the human connectome. Neurosurgery 71(1):1–5.  https://doi.org/10.1227/neu.0b013e318258e9ff CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tournier J-D, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3):1176–1185CrossRefPubMedGoogle Scholar
  77. Tournier J, Calamante F, Connelly A (2010) Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: Proc. 18th annual meeting of the Intl. Soc. Mag. Reson. Med.(ISMRM), p 1670Google Scholar
  78. Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66.  https://doi.org/10.1002/ima.22005 CrossRefGoogle Scholar
  79. Tran G, Shi Y (2015) Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging. IEEE Trans Med Imaging 34(11):2320–2332CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tuch DS (2004) Q-ball imaging. Magn Reson Med 52(6):1358–1372CrossRefPubMedGoogle Scholar
  81. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582.  https://doi.org/10.1002/mrm.10268 CrossRefPubMedGoogle Scholar
  82. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium WU-MH. (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79.  https://doi.org/10.1016/j.neuroimage.2013.05.041 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wandell BA (2016) Clarifying human white matter. Annu Rev Neurosci 39:103–128.  https://doi.org/10.1146/annurev-neuro-070815-013815 CrossRefPubMedGoogle Scholar
  84. Wedeen VJ, Hagmann P, Tseng WYI, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6):1377–1386CrossRefPubMedGoogle Scholar
  85. Willats L, Raffelt D, Smith RE, Tournier JD, Connelly A, Calamante F (2014) Quantification of track-weighted imaging (TWI): characterisation of within-subject reproducibility and between-subject variability. Neuroimage 87:18–31.  https://doi.org/10.1016/j.neuroimage.2013.11.016 CrossRefPubMedGoogle Scholar
  86. Wu D, Xu J, McMahon MT, van Zijl PC, Mori S, Northington FJ, Zhang J (2013) In vivo high-resolution diffusion tensor imaging of the mouse brain. Neuroimage 83:18–26.  https://doi.org/10.1016/j.neuroimage.2013.06.012 CrossRefPubMedGoogle Scholar
  87. Wu D, Martin LJ, Northington FJ, Zhang J (2014) Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med 72(5):1366–1374.  https://doi.org/10.1002/mrm.25441 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) MR tractography: a review of its clinical applications. Magn Reson Med Sci 8(4):165–174CrossRefPubMedGoogle Scholar
  89. Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29(9):1626–1635.  https://doi.org/10.1109/TMI.2010.2045126 CrossRefPubMedGoogle Scholar
  90. Yeh CH, Smith RE, Liang X, Calamante F, Connelly A (2016) Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics. Neuroimage.  https://doi.org/10.1016/j.neuroimage.2016.05.047 Google Scholar
  91. Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bienkowski MS, Foster NN, Yamashita S, Bowman I, Toga AW, Dong HW (2014) Neural networks of the mouse neocortex. Cell 156(5):1096–1111.  https://doi.org/10.1016/j.cell.2014.02.023 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dogu Baran Aydogan
    • 1
  • Russell Jacobs
    • 2
  • Stephanie Dulawa
    • 3
  • Summer L. Thompson
    • 3
    • 4
  • Maite Christi Francois
    • 5
  • Arthur W. Toga
    • 1
  • Hongwei Dong
    • 1
  • James A. Knowles
    • 5
  • Yonggang Shi
    • 1
  1. 1.Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Physiology and Biophysics, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Department of PsychiatryUniversity of California at San DiegoSan DiegoUSA
  4. 4.Committee on NeurobiologyUniversity of ChicagoChicagoUSA
  5. 5.Department of Psychiatry, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations