Skip to main content
Log in

Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Functional deactivation of the prefrontal cortex (PFC) is a critical step in the neuropathic pain phenotype. We performed optogenetic circuit dissection to study the properties of ventral hippocampal (vHipp) and thalamic (MDTh) inputs to L5 pyramidal cells in acute mPFC slices and to test whether alterations in these inputs contribute to mPFC deactivation in neuropathic pain. We found that: (1) both the vHipp and MDTh inputs elicit monosynaptic excitatory and polysynaptic inhibitory currents. (2) The strength of the excitatory MDTh input is uniform, while the vHipp input becomes progressively stronger along the dorsal–ventral axis. (3) Synaptic current kinetics suggests that the MDTh inputs contact distal, while the vHipp inputs contact proximal dendritic sections. (4) The longer delay of inhibitory currents in response to vHipp compared to MDTh inputs suggests that they are activated by feedback and feed-forward circuitries, respectively. (5) One week after a peripheral neuropathic injury, both glutamatergic inputs are modified: MDTh responses are smaller, without evidence of presynaptic changes, while the probability of release at vHipp–mPFC synapses becomes lower, without significant change in current amplitude. Thus, dysregulation of both these inputs likely contributes to the mPFC deactivation in neuropathic pain and may impair PFC-dependent cognitive tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker KS, Gibson S, Georgiou-Karistianis N, Roth RM, Giummarra MJ (2016) Everyday executive functioning in chronic pain: specific deficits in working memory and emotion control, predicted by mood, medications, and pain interference. Clin J Pain 32(8):673–680

    Article  PubMed  Google Scholar 

  • Block AE, Dhanji H, Thompson-Tardif SF, Floresco SB (2007) Thalamic–prefrontal cortical–ventral striatal circuitry mediates dissociable components of strategy set shifting. Cereb Cortex 17(7):1625–1636

    Article  PubMed  Google Scholar 

  • Cardoso-Cruz H, Sousa M, Vieira JB, Lima D, Galhardo V (2013) Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain. Pain 154(11):2397–2406

    Article  PubMed  Google Scholar 

  • Chang PC, Pollema-Mays SL, Centeno MV, Procissi D, Contini M, Baria AT, Martina M, Apkarian AV (2014) Role of nucleus accumbens in neuropathic pain: linked multi-scale evidence in the rat transitioning to neuropathic pain. Pain 155:1128–1139

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Cheriyan J, Kaushik MK, Ferreira AN, Sheets PL (2016) Specific targeting of the basolateral amygdala to projectionally defined pyramidal neurons in prelimbic and infralimbic cortex. eNeuro 3(2). https://doi.org/10.1523/ENEURO.0002-16.2016

  • Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  • Del Rey A, Yau HJ, Randolf A, Centeno MV, Wildmann J, Martina M, Besedovsky HO, Apkarian AV (2011) Chronic neuropathic pain-like behavior correlates with IL-1β expression and disrupts cytokine interactions in the hippocampus. Pain 152(12):2827–2835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dembrow NC, Zemelman BV, Johnston D (2015) Temporal dynamics of L5 dendrites in medial prefrontal cortex regulate integration versus coincidence detection of afferent inputs. J Neurosci 35(11):4501–4514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492(2):145–177

    Article  PubMed  Google Scholar 

  • Guida F, Luongo L, Marmo F, Romano R, Iannotta M, Napolitano F, Belardo C, Marabese I, D’Aniello A, De Gregorio D, Rossi F, Piscitelli F, Lattanzi R, de Bartolomeis A, Usiello A, Di Marzo V, de Novellis V, Maione S (2015) Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain 8:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji G, Neugebauer V (2011) Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. J Neurophysiol 106(5):2642–2652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji G, Neugebauer V (2012) Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 5:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, Neugebauer V (2010) Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci Off J Soc Neurosci 30:5451–5464

    Article  CAS  Google Scholar 

  • Jonas P, Bischofberger J, Fricker D, Miles R (2004) Interneuron Diversity series: Fast in, fast out–temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Karp JF, Reynolds CF 3rd, Butters MA, Dew MA, Mazumdar S, Begley AE, Lenze E, Weiner DK (2006) The relationship between pain and mental flexibility in older adult pain clinic patients. Pain Med 7(5):444–452

    Article  PubMed  Google Scholar 

  • Karshikoff B, Jensen KB, Kosek E, Kalpouzos G, Soop A, Ingvar M, Olgart Höglund C, Lekander M, Axelsson J (2016) Why sickness hurts: a central mechanism for pain induced by peripheral inflammation. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2016.04.001 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Kawaguchi Y, Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16(8):2701–2715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kelly CJ, Huang M, Meltzer HY, Martina M (2016) Reduced glutamatergic currents and dendritic branching of layer 5 pyramidal cells contribute to medial prefrontal cortex deactivation in a rat model of neuropathic pain. Front Cell Neurosci. https://doi.org/10.3389/fncel.2016.00133

    Article  PubMed  PubMed Central  Google Scholar 

  • Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171(2):157–191

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Manders TR, Eberle SE, Su C, D’Amour J, Yang R, Lin HY, Deisseroth K, Froemke RC, Wang J (2015) Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci Off J Soc Neurosci 35:5247–5259

    Article  CAS  Google Scholar 

  • Little JP, Carter AG (2012) Subcellular synaptic connectivity of layer 2 pyramidal neurons in the medial prefrontal cortex. J Neurosci 32(37):12808–12819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGarry LM, Packer AM, Fino E, Nikolenko V, Sippy T, Yuste R (2010) Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Front Neural Circuits 4:12. https://doi.org/10.3389/fncir.2010.00012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci USA 106:2423–2428

    Article  PubMed  PubMed Central  Google Scholar 

  • Moriarty O, McGuire BE, Finn DP (2011) The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol 93:385–404

    Article  PubMed  Google Scholar 

  • Moriarty O, Gorman CL, McGowan F, Ford GK, Roche M, Thompson K, Dockery P, McGuire BE, Finn DP (2016) Impaired recognition memory and cognitive flexibility in the rat L5–L6 spinal nerve ligation model of neuropathic pain. Scand J Pain 10:61–73

    Article  PubMed  Google Scholar 

  • Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, Radulovic J, Martina M, Miller RJ, Apkarian AV (2012) Abnormalities in hippocampal functioning with persistent pain. J Neurosci 32:5747–5756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pais-Vieira M, Mendes-Pinto MM, Lima D, Galhardo V (2009) Cognitive impairment of prefrontal-dependent decision-making in rats after the onset of chronic pain. Neuroscience 161:671–679

    Article  PubMed  CAS  Google Scholar 

  • Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457(7233):1142–1145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radzicki D, Pollema-Mays SL, Sanz-Clemente A, Martina M (2017) Loss of M1 receptor dependent cholinergic excitation contributes to mPFC deactivation in neuropathic pain. J Neurosci 37(9):2292–2304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regehr WG (2012) Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 4(7):a005702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren WJ, Liu Y, Zhou LJ, Li W, Zhong Y, Pang RP, Xin WJ, Wei XH, Wang J, Zhu HQ, Wu CY, Qin ZH, Liu G, Liu XG (2011) Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-alpha in rodents. Neuropsychopharmacology 36:979–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren W, Centeno MV, Berger S, Wu Y, Na X, Liu X, Kondapalli J, Apkarian AV, Martina M, Surmeier DJ (2016) The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat Neurosci 19:220–222

    Article  PubMed  CAS  Google Scholar 

  • Rotaru DC, Barrionuevo G, Sesack SR. (2005) Mediodorsal thalamic afferents to layer III of the rat prefrontal cortex: synaptic relationships to subclasses of interneurons. J Comp Neurol 490(3):220–238

    Article  PubMed  Google Scholar 

  • Ryan RT, Bhardwaj SK, Tse YC, Srivastava LK, Wong TP (2013) Opposing alterations in excitation and inhibition of layer 5 medial prefrontal cortex pyramidal neurons following neonatal ventral hippocampal lesion. Cereb Cortex 23(5):1198–1207

    Article  PubMed  Google Scholar 

  • Schwartz N, Temkin P, Jurado S, Lim BK, Heifets BD, Polepalli JS, Malenka RC (2014) Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science 345(6196):535–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490(7419):262–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walton KD, Llinas RR (2010) Translational pain research: from mouse to man. In: Kruger L, Light AR (eds) Central pain as a thalamocortical dysrhythmia: a thalamic efference disconnection? CRC Press, Boca Raton

    Google Scholar 

  • Wiech K, Tracey I (2009) The influence of negative emotions on pain: behavioral effects and neural mechanisms. NeuroImage 47:987–994

    Article  PubMed  Google Scholar 

  • Zhang Z, Gadotti VM, Chen L, Souza IA, Stemkowski PL, Zamponi GW (2015) Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep 12:752–759

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Grants from the National Institutes of Health (Grant Number: NS064091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Martina.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, C.J., Martina, M. Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain. Brain Struct Funct 223, 2627–2639 (2018). https://doi.org/10.1007/s00429-018-1648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1648-7

Keywords

Navigation