Advertisement

Brain Structure and Function

, Volume 223, Issue 6, pp 2879–2892 | Cite as

Progressive symptom-associated prefrontal volume loss occurs in first-episode schizophrenia but not in affective psychosis

  • Toshiyuki Ohtani
  • Elisabetta del Re
  • James J. Levitt
  • Margaret Niznikiewicz
  • Jun Konishi
  • Takeshi Asami
  • Toshiro Kawashima
  • Tomohide Roppongi
  • Paul G. Nestor
  • Martha E. Shenton
  • Dean F. Salisbury
  • Robert W. McCarley
Original Article

Abstract

Although smaller gray matter volumes (GMV) in the prefrontal cortex (PFC) in schizophrenia and bipolar disorder have been reported cross-sectionally, there are, to our knowledge, no reports of longitudinal comparisons using manually drawn, gyrally based ROI, and their associations with symptoms. The object of this study was to determine whether first-episode schizophrenia (FESZ) and first-episode affective psychosis (FEAFF) patients show initial and progressive PFC GMV reduction in bilateral frontal pole, superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG) and examine their symptom associations. Twenty-one FESZ, 24 FEAFF and 23 healthy control subjects (HC) underwent 1.5T MRI with follow-up imaging on the same scanner ~ 1.5 years later. Groups were strikingly different in progressive GMV loss. FESZ showed significant progressive GMV loss in the left SFG, bilateral MFG, and bilateral IFG. In addition, left MFG and/or IFG GMV loss was associated with worsening of withdrawal–retardation and total BPRS symptoms scores. In contrast, FEAFF showed no significant difference in GMV compared with HC, either cross-sectionally or longitudinally. Of note, FreeSurfer run on the same images showed no significant changes longitudinally.

Keywords

First-episode schizophrenia First-episode affective psychosis Magnetic resonance imaging (MRI) Prefrontal cortex Longitudinal follow-up 

Notes

Acknowledgements

This study was supported by Dept. of Veterans Affairs Medical Research Awards (Schizophrenia Center, Merit Awards to RW McCarley and ME Shenton) and by grants K02 MH 01110 and R01MH50747 (to ME Shenton), R01MH40799 and R01 MH 052807 (to RW McCarley), CIDAR P50MH080272 (to RW McCarley and ME Shenton), and R01 MH58704 (to DF Salisbury) from the National Institute of Mental Health and grants from the MIND (Mental Illness and Neuroscience Discovery) Foundation (to RW McCarley) and NARSAD (to DF Salisbury).

Compliance with ethical standards

Conflict of interest

Authors have no actual or potential conflicts of interest.

Supplementary material

429_2018_1634_MOESM1_ESM.tif (72 kb)
Supplementary material 1 (TIF 72 KB)
429_2018_1634_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 32 KB)
429_2018_1634_MOESM3_ESM.tif (1.2 mb)
Supplementary material 3 (TIF 1229 KB)

References

  1. Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC (2011) Progressive brain change in Schizophrenia: a prospective longitudinal study of first-episode Schizophrenia. Biol Psychiatry 70(7):672–679CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ansell BR, Dwyer DB, Wood SJ et al (2014) Divergent effects of first-generation and second-generation antipsychotics on cortical thickness in first-episode psychosis. Psychol Med 31:1–13Google Scholar
  3. Arango C, Rapado-Castro M, Reig S et al (2012) Progressive brain changes in children and adolescents with first-episode psychosis. Arch Gen Psychiatry 69:16–26CrossRefPubMedGoogle Scholar
  4. Asami T, Bouix S, Whitford TJ, Shenton ME, Salisbury DF, McCarley RW (2012) Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation. NeuroImage 59:986–996CrossRefPubMedGoogle Scholar
  5. Atmaca M, Ozdemir H, Cetinkaya S, Parmaksiz S, Belli H, Poyraz AK, Tezcan E, Ogur E (2007) Cingulate gyrus volumetry in drug free bipolar patients and patients treated with valproate or valproate and quetiapine. J Psychiatr Res 41:821–827CrossRefPubMedGoogle Scholar
  6. Bustillo JR, Rowland LM, Mullins P et al (2010) 1H-MRS at 4 T in minimally treated early schizophrenia. Mol Psychiatry 15:629–636CrossRefPubMedGoogle Scholar
  7. Cherbuin N, Anstey KJ, Réglade-Meslin C, Sachdev PS (2009) In vivo hippocampal measurement and memory: a comparison of manual tracing and automated segmentation in a large community-based sample. PLoS One 4(4):e5265CrossRefPubMedCentralPubMedGoogle Scholar
  8. Chintalapudi M, Kulhara P, Avasthi A (1993) Post-psychotic depression in schizophrenia. Eur Arch Psychiatry Clin Neurosci 243:103–108CrossRefPubMedGoogle Scholar
  9. Cohen J (1988) Statistical power analysis for the behavioral sciences (second Ed.). Lawrence Erlbaum AssociatesGoogle Scholar
  10. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMedGoogle Scholar
  11. de Castro-Manglano P, Mechelli A, Soutullo C, Gimenez-Amaya J, Ortuno F, McGuire P (2011) Longitudinal changes in brain structure following the first episode of psychosis. Psychiatry Res 191:166–173CrossRefPubMedGoogle Scholar
  12. De Peri L, Crescini A, Deste G, Fusar-Poli P, Sacchetti E, Vita A (2012) Brain structural abnormalities at the onset of schizophrenia and bipolar disorder: a meta-analysis of controlled magnetic resonance imaging studies. Curr Pharm Des 18:486–494CrossRefPubMedGoogle Scholar
  13. Deicken RF, Calabrese G, Merrin EL, Meyeρff DJ, Dillon WP, Weiner MW, Fein G (1994) 31phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia. Biol Psychiatry 36:503–510CrossRefPubMedGoogle Scholar
  14. Delaloye C, Moy G, de Bilbao F et al (2011) Longitudinal analysis of cognitive performances and structural brain changes in late-life bipolar disorder. Int J Geriatr Psychiatry 26:1309–1318CrossRefPubMedGoogle Scholar
  15. Ekman CJ, Lind J, Ryden E, Ingvar M, Landen M (2010) Manic episodes are associated with grey matter volume reduction—a voxel-based morphometry brain analysis. Acta Psychiatr Scand 122:507–515CrossRefPubMedGoogle Scholar
  16. First MB, Gibbon M, Spitzer RL, Williams JBW (1997) Structured clinical interview for DSM-IV personality disorders (SCID-II). American Psychiatric Publishing, WashingtonGoogle Scholar
  17. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMedGoogle Scholar
  18. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMedGoogle Scholar
  19. Fornito A, Yucel M, Patti J, Wood SJ, Pantelis C (2009) Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res 108:104–113CrossRefPubMedGoogle Scholar
  20. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S (2013) Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev 37:1680–1691CrossRefPubMedCentralPubMedGoogle Scholar
  21. Hajek T, Carrey N, Alda M (2005) Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 7:393–403CrossRefPubMedGoogle Scholar
  22. Harms MP, Wang L, Campanella C et al (2010) Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. Br J Psychiatry 196:150–157CrossRefPubMedCentralPubMedGoogle Scholar
  23. Ho BC, Wassink TH, Ziebell S, Andreasen NC (2011) Cannabinoid receptor 1 gene polymorphisms and marijuana misuse interactions on white matter and cognitive deficits in schizophrenia. Schizophr Res 128:66–75CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kalmar JH, Wang F, Spencer L et al (2009) Preliminary evidence for progressive prefrontal abnormalities in adolescents and young adults with bipolar disorder. J Int Neuropsychol Soc 15:476–481CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kasai K, Shenton ME, Salisbury DF et al (2003) Progressive decrease of left Heschl gyrus and planum temporale gray matter volume in schizophrenia: A longitudinal study of first-episode patients. Arch Gen Psychiatry 60:766–773CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lee SH, Niznikiewicz M, Asami T, Otsuka T, Salisbury DF, Shenton ME, McCarley RW (2016) Initial and progressive gray matter abnormalities in insular gyrus and temporal pole in first-episode Schizophrenia contrasted with first-episode affective psychosis. Schizophr Bull 42(3):790–801CrossRefPubMedGoogle Scholar
  27. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK, Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators (2005) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 353:1209–1223CrossRefPubMedGoogle Scholar
  28. Liem F, Mérillat S, Bezzola L, Hirsiger S, Philipp M, Madhyastha T, Jäncke L (2015) Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. Neuroimage 108:95–109CrossRefPubMedGoogle Scholar
  29. Lopez-Garcia P, Aizenstein HJ, Snitz BE, Walter RP, Carter CS (2006) Automated ROI-based brain parcellation analysis of frontal and temporal brain volumes in schizophrenia. Psychiatry Res 147:153–161CrossRefPubMedGoogle Scholar
  30. MacDonald AW 3rd, Carter CS, Kerns JG, Ursu S, Barch DM, Holmes AJ, Stenger VA, Cohen JD (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis. Am J Psychiatry 162:475–484CrossRefPubMedGoogle Scholar
  31. McCarthy CS, Ramprashad A, Thompson C, Botti JA, Coman IL, Kates WR (2015) A comparison of FreeSurfer-generated data with and without manual intervention. Front Neurosci 9:379CrossRefPubMedCentralPubMedGoogle Scholar
  32. Menon V, Anagnoson RT, Mathalon DH, Glover GH. Pfefferbaum A (2001) Functional neuroanatomy of auditory working memory in schizophrenia: relation to positive and negative symptoms. Neuroimage 13:433–446CrossRefPubMedGoogle Scholar
  33. Nakamura M, Salisbury DF, Hirayasu Y et al (2007) Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI Study. Biol Psychiatry 63:773–783CrossRefGoogle Scholar
  34. Narr KL, Sharma T, Woods RP, Thompson PM, Sowell ER, Rex D, Kim S, Asuncion D, Jang S, Mazziotta J, Toga AW (2003) Increases in regional subarachnoid CSF without apparent cortical gray matter deficits in schizophrenia: modulating effects of sex and age. Am J Psychiatry 160:2169–2180CrossRefPubMedGoogle Scholar
  35. Navari S, Dazzan P (2009) Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med 39:1763–1777CrossRefPubMedGoogle Scholar
  36. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  37. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007CrossRefPubMedGoogle Scholar
  38. Overall JE, Gorham DR (1962) The Brief Psychiatric Rating Scale. Psychol Rep 10:790–812Google Scholar
  39. Rais M, Cahn W, Schnack HG, Hulshoff Pol HE, Kahn RS, van Haren NE (2012) Brain volume reductions in medication-naive patients with schizophrenia in relation to intelligence quotient. Psychol Med 42:1847–1856CrossRefPubMedGoogle Scholar
  40. Siris SG (2000) Depression in schizophrenia: perspective in the era of “Atypical” antipsychotic agents. Am J Psychiatry 157:1379–1389CrossRefPubMedGoogle Scholar
  41. Spironelli C, Angrilli A, Calogero A, Stegagno L (2011) Delta EEG band as a marker of left hypofrontality for language in schizophrenia patients. Schizophr Bull 37:757–767CrossRefPubMedGoogle Scholar
  42. Spitzer RL, Williams JBW, Gibson M, First M (1990a) The structured clinical interview for DSM-III-R (SCID). American Psychiatric Association, WashingtonGoogle Scholar
  43. Spitzer RL, Williams JBW, Gibson M, First M (1990b) The structured clinical interview for DSM-III-R–Non-Patient Edition (SCID-NP). American Psychiatric Association, WashingtonGoogle Scholar
  44. Sun D, Stuart GW, Jenkinson M et al (2009) Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol Psychiatry 14:976–986CrossRefPubMedGoogle Scholar
  45. Suzuki M, Zhou SY, Takahashi T et al (2005) Differential contributions of prefrontal and temporolimbic pathology to mechanisms of psychosis. Brain 128:2109–2122CrossRefPubMedGoogle Scholar
  46. van Haren NE, Schnack HG, Cahn W et al (2011) Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry 68:871–880CrossRefPubMedGoogle Scholar
  47. Wechsler D (1981) Wechsler Adult Intelligence Scale–Revised. Harcourt Brace Jovanovich, New YorkGoogle Scholar
  48. Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S, Schaefer S, Heinze HJ, Düzel E, Bäckman L, Lindenberger U, Lövdén M (2014) Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains. Hum Brain Mapp 35(8):4236–4248CrossRefPubMedGoogle Scholar
  49. Woo TU, Spencer K, McCarley RW (2010) Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatry 18:173–189CrossRefPubMedCentralPubMedGoogle Scholar
  50. Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J clin Psychiatry 64:663–667CrossRefPubMedGoogle Scholar
  51. Yamasue H, Iwanami A, Hirayasu Y et al (2004) Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res 131:195–207CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Toshiyuki Ohtani
    • 1
    • 2
    • 4
  • Elisabetta del Re
    • 1
    • 2
  • James J. Levitt
    • 1
    • 2
  • Margaret Niznikiewicz
    • 1
    • 2
  • Jun Konishi
    • 1
    • 2
    • 5
  • Takeshi Asami
    • 1
    • 2
    • 5
  • Toshiro Kawashima
    • 1
    • 2
    • 6
  • Tomohide Roppongi
    • 1
    • 2
    • 5
  • Paul G. Nestor
    • 1
    • 3
  • Martha E. Shenton
    • 1
    • 2
  • Dean F. Salisbury
    • 1
    • 7
  • Robert W. McCarley
    • 1
  1. 1.Laboratory of Neuroscience, Clinical Neuroscience Division, Department of Psychiatry, 116A, Boston Veterans Affairs Healthcare System, Brockton DivisionHarvard Medical SchoolBrocktonUSA
  2. 2.Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of PsychologyUniversity of MassachusettsBostonUSA
  4. 4.Safety and Health OrganizationChiba UniversityChibaJapan
  5. 5.Department of PsychiatryYokohama City University School of MedicineYokohamaJapan
  6. 6.Department of Psychiatry, Faculty of MedicineSaga UniversitySagaJapan
  7. 7.Department of PsychiatryUniversity of PittsburghPittsburghUSA

Personalised recommendations