Allen JS, Damasio H, Grabowski TJ et al (2003) Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 18:880–894
Article
PubMed
Google Scholar
Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18
Article
PubMed
Google Scholar
Avants BB, Tustison NJ, Song G et al (2011a) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044
Article
PubMed
Google Scholar
Avants BB, Tustison NJ, Wu J et al (2011b) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400
Article
PubMed
PubMed Central
Google Scholar
Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180
CAS
Article
PubMed
Google Scholar
Bartzokis G (2004) Quadratic trajectories of brain myelin content: unifying construct for neuropsychiatric disorders. Neurobiol Aging 25:49–62
CAS
Article
Google Scholar
Belmonte MK, Allen G, Beckel-Mitchener A et al (2004) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231
CAS
Article
PubMed
Google Scholar
Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301
CAS
Article
PubMed
Google Scholar
Cabezas M, Oliver A, Lladó X et al (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Meth Prog Bio 104:e158–e177
Article
Google Scholar
Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110
CAS
Article
PubMed
Google Scholar
Caviness VS Jr, Kennedy DN, Richelme C et al (1996) The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 6:726–736
Article
PubMed
Google Scholar
Chang YS, Owen JP, Pojman NJ et al (2015) White matter changes of neurite density and fiber orientation dispersion during human brain maturation. PLoS One 10:e0123656
Article
PubMed
PubMed Central
Google Scholar
Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23:153–170
Article
PubMed
Google Scholar
Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology:672–682
Croteau-Chonka EC, Dean DC, Remer J et al (2016) Examining the relationships between cortical maturation and white matter myelination throughout early childhood. Neuroimage 125:413–421
Article
PubMed
Google Scholar
Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80
Article
PubMed
Google Scholar
Davidson RJ (2008) Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn Emot 7:115–138
Article
Google Scholar
Davidson RJ, McEwen BS (2012) Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci 15:689–695
CAS
Article
PubMed
PubMed Central
Google Scholar
Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44
CAS
Article
PubMed
Google Scholar
Dean DC III, Dirks H, O’Muircheartaigh J et al (2014a) Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr Radiol 44:64–72
Article
PubMed
Google Scholar
Dean DC III, O’Muircheartaigh J, Dirks H et al (2014b) Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 84:742–752
Article
PubMed
PubMed Central
Google Scholar
Dean DC III, O’Muircheartaigh J, Dirks H et al (2014c) Characterizing longitudinal white matter development during early childhood. Brain Struct Funct:1921–1931
Dean DC III, O’Muircheartaigh J, Dirks H et al (2016) Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage 132:225–237
CAS
Article
PubMed
PubMed Central
Google Scholar
Dean DC III, Planalp EM, Wooten W et al (2017) Mapping white matter microstructure in the one month human brain. Sci Rep 7(1):9759
Article
PubMed
PubMed Central
Google Scholar
Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29:367–373
CAS
Article
PubMed
Google Scholar
Demerens C, Stankoff B, Logak M et al (1996) Induction of myelination in the central nervous system by electrical activity. PNAS 93:9887–9892
CAS
Article
PubMed
PubMed Central
Google Scholar
Deoni SCL, Mercure E, Blasi A et al (2011) Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 31:784–791. https://doi.org/10.1523/JNEUROSCI.2106-10.2011
CAS
Article
PubMed
Google Scholar
Deoni SCL, Dean DC, O’Muircheartaigh J et al (2012) Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage 63:1038–1053
Article
PubMed
PubMed Central
Google Scholar
Deoni SCL, Dean DC, Remer J et al (2015) Cortical maturation and myelination in healthy toddlers and young children. Neuroimage 115:147–161
Article
PubMed
PubMed Central
Google Scholar
DiCicco-Bloom E, Lord C, Zwaigenbaum L et al (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 26:6897–6906
CAS
Article
PubMed
Google Scholar
Dobbing J (1990) Vulnerable periods in developing brain. In: Commentary. Springer, London, pp 1–17
Google Scholar
Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132
CAS
Article
PubMed
Google Scholar
Dubois J, Hertz-Pannier L, Cachia A et al (2009) Structural asymmetries in the infant language and sensor–motor networks. Cereb Cortex 19:414–423
CAS
Article
PubMed
Google Scholar
Dubois J, Dehaene-Lambertz G, Kulikova S et al (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71
CAS
Article
PubMed
Google Scholar
Durston S, Hulshoff Pol HE, Casey BJ et al (2001) Anatomical MRI of the developing human brain: what have we learned? J Am Acad Child Adolesc Psychiatry 40:1012–1020
CAS
Article
PubMed
Google Scholar
Elston GN, Fujita I (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 8:13644
Google Scholar
Evans AC, Brain Development Cooperative Group (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202
Article
PubMed
Google Scholar
Fields RD (2005) Myelination: an overlooked mechanism of synaptic plasticity? Neuroscientist 11:528–531
Article
PubMed
PubMed Central
Google Scholar
Fields RD (2008a) White matter matters. Sci Am 298:54–61
Article
Google Scholar
Fields RD (2008b) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31:361–370
CAS
Article
PubMed
PubMed Central
Google Scholar
Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767
CAS
Article
PubMed
Google Scholar
Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67:728–734
CAS
Article
PubMed
PubMed Central
Google Scholar
Giedd JN, Snell JW, Lange N et al (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–559
CAS
Article
PubMed
Google Scholar
Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863
CAS
Article
PubMed
Google Scholar
Gilmore JH, Lin W, Prastawa MW et al (2007) Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J Neurosci 27:1255–1260
CAS
Article
PubMed
PubMed Central
Google Scholar
Gilmore JH, Shi F, Woolson SL et al (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22:2478–2485
Article
PubMed
Google Scholar
Glasser MF, Van Essen DC (2011) Mapping Human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616
CAS
Article
PubMed
PubMed Central
Google Scholar
Gogtay N, Thompson PM (2010) Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn 72:6–15
Article
PubMed
Google Scholar
Gogtay N, Giedd JN, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101:8174–8179
CAS
Article
PubMed
PubMed Central
Google Scholar
Goldstein JM, Seidman LJ, Horton NJ et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497
CAS
Article
PubMed
Google Scholar
Hill J, Dierker D, Neil J et al (2010) A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J Neurosci 30:2268–2276
CAS
Article
PubMed
PubMed Central
Google Scholar
Holland D, Chang L, Ernst TM et al (2014) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71:1266–1274
Article
PubMed
PubMed Central
Google Scholar
Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38
Article
PubMed
Google Scholar
Hugdahl K, Davidson RJ (2004) The asymmetrical brain. MIT Press, London
Google Scholar
Hüppi PS, Maier SE, Peled S et al (1998a) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590
Article
PubMed
Google Scholar
Hüppi PS, Warfield S, Kikinis R et al (1998b) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235
Article
PubMed
Google Scholar
Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178
CAS
Article
PubMed
Google Scholar
Knickmeyer RC, Gouttard S, Kang C et al (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182
CAS
Article
PubMed
PubMed Central
Google Scholar
Kolb B, Gibb R (2011) Brain plasticity and behaviour in the developing brain. J Can Acad Child Adolesc Psychiatry 20:265–276
PubMed
PubMed Central
Google Scholar
Koolschijn PCMP., Crone EA (2013) Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci 5:106–118
Article
PubMed
Google Scholar
Kulikova S, Hertz-Pannier L, Dehaene-Lambertz G et al (2014) Multi-parametric evaluation of the white matter maturation. Brain Struct Funct 1–16
Kunz N, Zhang H, Vasung L et al (2014) Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 96:288–299
Article
PubMed
Google Scholar
Lapate RC, Rokers B, Tromp DPM et al (2016) Awareness of emotional stimuli determines the behavioral consequences of amygdala activation and amygdala-prefrontal connectivity. Sci Rep 6:25826
CAS
Article
PubMed
PubMed Central
Google Scholar
Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31:10937–10947
CAS
Article
PubMed
Google Scholar
Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055
CAS
Article
PubMed
Google Scholar
Lebel C, Gee M, Camicioli R et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:340–352
CAS
Article
PubMed
Google Scholar
Lenroot RK, Giedd JN (2010) Sex differences in the adolescent brain. Brain Cogn 72:46–55
Article
PubMed
Google Scholar
Lenroot RK, Gogtay N, Greenstein DK et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36:1065–1073
Article
PubMed
PubMed Central
Google Scholar
Lupien SJ, Parent S, Evans AC et al (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci USA 108:14324–14329
CAS
Article
PubMed
PubMed Central
Google Scholar
Makki MI, Hagmann C (2017) Regional differences in interhemispheric structural fibers in healthy, term infants. J Neurosci Res 95:876–884
CAS
Article
PubMed
Google Scholar
Makropoulos A, Gousias IS, Ledig C et al (2014) Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33:1818–1831
Article
PubMed
Google Scholar
Makropoulos A, Aljabar P, Wright R et al (2016) Regional growth and atlasing of the developing human brain. Neuroimage 125:456–478
Article
PubMed
PubMed Central
Google Scholar
Morris JS, Öhman A, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470
CAS
Article
PubMed
Google Scholar
Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358
CAS
Article
PubMed
Google Scholar
Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456
PubMed
Google Scholar
O’Muircheartaigh J, Dean DC III, Dirks H et al (2013) Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci 33:16170–16177
Article
PubMed
PubMed Central
Google Scholar
Oishi K, Mori S, Donohue PK et al (2011) Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. Neuroimage 56:8–20
Article
PubMed
PubMed Central
Google Scholar
Paus T, Toro R (2009) Could sex differences in white matter be explained by g ratio? Front Neuroanat 3:14
Article
PubMed
PubMed Central
Google Scholar
Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266
CAS
Article
PubMed
Google Scholar
Perrin JS, Leonard G, Perron M et al (2009) Sex differences in the growth of white matter during adolescence. Neuroimage 45:1055–1066
CAS
Article
PubMed
Google Scholar
Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887
CAS
Article
PubMed
Google Scholar
R Development Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Reiss AL, Abrams MT, Singer HS et al (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119(Pt 5):1763–1774
Article
PubMed
Google Scholar
Shi F, Yap P-T, Wu G et al (2011) Infant brain atlases from neonates to 1- and 2-year-olds. 6:e18746–e18711
Simmonds DJ, Hallquist MN, Asato M, Luna B (2014) Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 92:356–368
Article
PubMed
Google Scholar
Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348
Article
PubMed
PubMed Central
Google Scholar
Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48
CAS
Article
PubMed
Google Scholar
Wilke M, Krägeloh-Mann I, Holland SK (2007) Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307
Article
PubMed
Google Scholar
Yakovlev P, Lecours IR (1967) Regional development of the brain in early life. Minkowski A
Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Med Imaging IEEE Trans 20:45–57
CAS
Article
Google Scholar