Brain Structure and Function

, Volume 223, Issue 4, pp 1881–1895 | Cite as

Changes in neocortical and hippocampal microglial cells during hibernation

  • Gonzalo León-Espinosa
  • Mamen Regalado-Reyes
  • Javier DeFelipe
  • Alberto Muñoz
Original Article

Abstract

Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.

Keywords

Resting microglia Activated microglia Dystrophic microglia Syrian hamster Torpor Iba-1 

Notes

Acknowledgements

This work was supported by grants from the following entities: SAF 2015-66603-P from the Ministerio de Economía y Competitividad; Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0066, Spain); and a grant from the Alzheimer’s Association (ZEN-15-321663). We thank Soledad Martínez for technical help with the surgical procedures in middle cerebral artery occlusion experiments and Natalia Yanguas for providing antibodies for CD16/32 and CD64.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that should be construed as a potential conflict of interest.

Ethical approval

All experimental procedures were carried out at the animal facility in the San Pablo CEU University of Madrid (SVA-CEU.USP, Registration Number ES 28022 0000015) and were approved by the institutional Animal Experiment Ethics Committee.

References

  1. Aibiki M, Maekawa S, Ogura S, Kinoshita Y, Kawai N, Yokono S (1999) Effect of moderate hypothermia on systemic and internal jugular plasma IL-6 levels after traumatic brain injury in humans. J Neurotrauma 16(3):225–232.  https://doi.org/10.1089/neu.1999.16.225 PubMedCrossRefGoogle Scholar
  2. Anton-Fernandez A, Leon-Espinosa G, DeFelipe J, Munoz A (2015) Changes in the Golgi apparatus of neocortical and hippocampal neurons in the hibernating hamster. Front Neuroanat 9:157.  https://doi.org/10.3389/fnana.2015.00157 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, Van der Zee EA, Harkany T, Holzer M, Hartig W (2003) Reversible paired helical filament-likephosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23(18):6972–6981PubMedGoogle Scholar
  4. Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kugler S, Ikezu T (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18(11):1584–1593.  https://doi.org/10.1038/nn.4132 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachstetter AD, Van Eldik LJ, Schmitt FA, Neltner JH, Ighodaro ET, Webster SJ, Patel E, Abner EL, Kryscio RJ, Nelson PT (2015) Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease. dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol Commun 3:32.  https://doi.org/10.1186/s40478-015-0209-z PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bechade C, Cantaut-Belarif Y, Bessis A (2013) Microglial control of neuronal activity. Front Cell Neurosci 7:32.  https://doi.org/10.3389/fncel.2013.00032 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165(5):1643–1652.  https://doi.org/10.1016/S0002-9440(10)63421-9 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563.  https://doi.org/10.1056/NEJMoa003289 PubMedCrossRefGoogle Scholar
  9. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28(16):4283–4292.  https://doi.org/10.1523/JNEUROSCI.4814-07.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bouma HR, Carey HV, Kroese FG (2010a) Hibernation: the immune system at rest? J Leukoc Biol 88(4):619–624.  https://doi.org/10.1189/jlb.0310174 PubMedCrossRefGoogle Scholar
  11. Bouma HR, Strijkstra AM, Boerema AS, Deelman LE, Epema AH, Hut RA, Kroese FG, Henning RH (2010b) Blood cell dynamics during hibernation in the European Ground Squirrel. Vet Immunol Immunopathol 136(3–4):319–323.  https://doi.org/10.1016/j.vetimm.2010.03.016 PubMedCrossRefGoogle Scholar
  12. Bullmann T, Seeger G, Stieler J, Hanics J, Reimann K, Kretzschmann TP, Hilbrich I, Holzer M, Alpar A, Arendt T (2016) Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters. Hippocampus 26(3):301–318.  https://doi.org/10.1002/hipo.22522 PubMedCrossRefGoogle Scholar
  13. Buzadzic B, Spasic M, Saicic ZS, Radojicic R, Petrovic VM, Halliwell B (1990) Antioxidant defenses in the ground squirrel Citellus citellus. 2. The effect of hibernation. Free Radic Biol Med 9(5):407–413PubMedCrossRefGoogle Scholar
  14. Cogut V, Bruintjes JJ, Eggen BJL, van der Zee EA, Henning RH (2017) Brain inflammatory cytokines and microglia morphology changes throughout hibernation phases in Syrian hamster. Brain Behav Immun.  https://doi.org/10.1016/j.bbi.2017.10.009 PubMedGoogle Scholar
  15. Colak G, Filiano AJ, Johnson GV (2011) The application of permanent middle cerebral artery ligation in the mouse. J Vis Exp (53).  https://doi.org/10.3791/3039 PubMedPubMedCentralGoogle Scholar
  16. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758.  https://doi.org/10.1038/nn1472 PubMedCrossRefGoogle Scholar
  17. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12(7):388–399.  https://doi.org/10.1038/nrn3053 PubMedCrossRefGoogle Scholar
  18. Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ (2015) Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy—where to from here? Front Neurol 6:198.  https://doi.org/10.3389/fneur.2015.00198 PubMedPubMedCentralGoogle Scholar
  19. Davidson JO, Yuill CA, Zhang FG, Wassink G, Bennet L, Gunn AJ (2016) Extending the duration of hypothermia does not further improve white matter protection after ischemia in term-equivalent fetal sheep. Sci Rep 6:25178.  https://doi.org/10.1038/srep25178 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Davies DS, Ma J, Jegathees T, Goldsbury C (2016) Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol.  https://doi.org/10.1111/bpa.12456 PubMedGoogle Scholar
  21. Drew KL, Rice ME, Kuhn TB, Smith MA (2001) Neuroprotective adaptations in hibernation: therapeutic implications for ischemia–reperfusion,traumatic brain injury and neurodegenerative diseases. Free Radic Biol Med 31(5):563–573PubMedCrossRefGoogle Scholar
  22. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977.  https://doi.org/10.1038/nn.4030 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fendrick SE, Xue QS, Streit WJ (2007) Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene. J Neuroinflammation 4:9.  https://doi.org/10.1186/1742-2094-4-9 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ (2007) Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 10(1):61–74.  https://doi.org/10.1089/rej.2006.9096 PubMedCrossRefGoogle Scholar
  25. Frerichs KU, Hallenbeck JM (1998) Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18(2):168–175.  https://doi.org/10.1097/00004647-199802000-00007 PubMedCrossRefGoogle Scholar
  26. Frerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM (1994) Local cerebral blood flow during hibernation, a model of natural tolerance to “cerebral ischemia”. J Cereb Blood Flow Metab 14(2):193–205.  https://doi.org/10.1038/jcbfm.1994.26 PubMedCrossRefGoogle Scholar
  27. Frerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95(24):14511–14516PubMedPubMedCentralCrossRefGoogle Scholar
  28. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274.  https://doi.org/10.1146/annurev.physiol.66.032102.115105 PubMedCrossRefGoogle Scholar
  29. Geiser F (2013) Hibernation. Curr Biol 23(5):R188–R193.  https://doi.org/10.1016/j.cub.2013.01.062 PubMedCrossRefGoogle Scholar
  30. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857.  https://doi.org/10.1161/STROKEAHA.108.534503 PubMedCrossRefGoogle Scholar
  31. Gyoneva S, Swanger SA, Zhang J, Weinshenker D, Traynelis SF (2016) Altered motility of plaque-associated microglia in a model of Alzheimer’s disease. Neuroscience 330:410–420.  https://doi.org/10.1016/j.neuroscience.2016.05.061 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394.  https://doi.org/10.1038/nn1997 PubMedCrossRefGoogle Scholar
  33. Ikeda M, Shoji M, Kawarai T, Kawarabayashi T, Matsubara E, Murakami T, Sasaki A, Tomidokoro Y, Ikarashi Y, Kuribara H, Ishiguro K, Hasegawa M, Yen SH, Chishti MA, Harigaya Y, Abe K, Okamoto K, St. George-Hyslop P, Westaway D (2005) Accumulation of filamentous tau in the cerebral cortex of human tau R406W transgenic mice. Am J Pathol 166(2):521–531.  https://doi.org/10.1016/S0002-9440(10)62274-2 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57(1):1–9PubMedCrossRefGoogle Scholar
  35. Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44.  https://doi.org/10.3389/fncel.2013.00044 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8(4):e60921.  https://doi.org/10.1371/journal.pone.0060921 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Leon-Espinosa G, Garcia E, Garcia-Escudero V, Hernandez F, Defelipe J, Avila J (2013) Changes in tau phosphorylation in hibernating rodents. J Neurosci Res 91(7):954–962.  https://doi.org/10.1002/jnr.23220 PubMedCrossRefGoogle Scholar
  38. Leon-Espinosa G, Garcia E, Gomez-Pinedo U, Hernandez F, DeFelipe J, Avila J (2016) Decreased adult neurogenesis in hibernating Syrian hamster. Neuroscience 333:181–192.  https://doi.org/10.1016/j.neuroscience.2016.07.016 PubMedCrossRefGoogle Scholar
  39. Lim SH, Park E, You B, Jung Y, Park AR, Park SG, Lee JR (2013) Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8(11):e81218.  https://doi.org/10.1371/journal.pone.0081218 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lopes KO, Sparks DL, Streit WJ (2008) Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia 56(10):1048–1060.  https://doi.org/10.1002/glia.20678 PubMedCrossRefGoogle Scholar
  41. Ma L, Morton AJ, Nicholson LF (2003) Microglia density decreases with age in a mouse model of Huntington’s disease. Glia 43(3):274–280.  https://doi.org/10.1002/glia.10261 PubMedCrossRefGoogle Scholar
  42. Mallard C, Davidson JO, Tan S, Green CR, Bennet L, Robertson NJ, Gunn AJ (2014) Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr Res 75(1–2):234–240.  https://doi.org/10.1038/pr.2013.188 PubMedCrossRefGoogle Scholar
  43. Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, Ransohoff RM, Lamb BT, Bhaskar K (2015) Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 138(Pt 6):1738–1755.  https://doi.org/10.1093/brain/awv081 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Marion DW, Penrod LE, Kelsey SF, Obrist WD, Kochanek PM, Palmer AM, Wisniewski SR, DeKosky ST (1997) Treatment of traumatic brain injury with moderate hypothermia. N Engl J Med 336(8):540–546.  https://doi.org/10.1056/NEJM199702203360803 PubMedCrossRefGoogle Scholar
  45. Matsui H, Ohgomori T, Natori T, Miyamoto K, Kusunoki S, Sakamoto K, Ishiguro N, Imagama S, Kadomatsu K (2013) Keratan sulfate expression in microglia is diminished in the spinal cord in experimental autoimmune neuritis. Cell Death Dis 4:e946.  https://doi.org/10.1038/cddis.2013.479 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Matsui T, Kida H, Iha T, Obara T, Nomura S, Fujimiya T, Suzuki M (2014a) Effects of hypothermia on ex vivo microglial production of pro- and anti-inflammatory cytokines and nitric oxide in hypoxic-ischemic brain-injured mice. Folia Neuropathol 52(2):151–158PubMedCrossRefGoogle Scholar
  47. Matsui T, Yoshida Y, Yanagihara M, Suenaga H (2014b) Hypothermia at 35 degrees C reduces the time-dependent microglial production of pro-inflammatory and anti-inflammatory factors that mediate neuronal cell death. Neurocrit Care 20(2):301–310.  https://doi.org/10.1007/s12028-013-9911-5 PubMedCrossRefGoogle Scholar
  48. McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200PubMedCrossRefGoogle Scholar
  49. Miyamoto A, Wake H, Moorhouse AJ, Nabekura J (2013) Microglia and synapse interactions: fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7:70.  https://doi.org/10.3389/fncel.2013.00070 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Morrison HW, Filosa JA (2013) A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 10:4.  https://doi.org/10.1186/1742-2094-10-4 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Moskowitz MA (2010) Brain protection: maybe yes, maybe no. Stroke 41(10 Suppl):S85–S86.  https://doi.org/10.1161/STROKEAHA.110.598458 PubMedCrossRefGoogle Scholar
  52. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198.  https://doi.org/10.1016/j.neuron.2010.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295.  https://doi.org/10.1093/brain/awn109 PubMedGoogle Scholar
  54. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318.  https://doi.org/10.1126/science.1110647 PubMedCrossRefGoogle Scholar
  55. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609.  https://doi.org/10.1016/j.cell.2013.11.030 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201.  https://doi.org/10.1038/nrneurol.2010.17 PubMedCrossRefGoogle Scholar
  57. Popov VI, Bocharova LS (1992b) Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 48(1):53–62PubMedCrossRefGoogle Scholar
  58. Popov VI, Bocharova LS, Bragin AG (1992a) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48(1):45–51PubMedCrossRefGoogle Scholar
  59. Popov VI, Medvedev NI, Patrushev IV, Ignat’ev DA, Morenkov ED, Stewart MG (2007) Reversible reduction in dendritic spines in CA1 of rat and ground squirrel subjected to hypothermia-normothermia in vivo: a three-dimensional electron microscope study. Neuroscience 149(3):549–560.  https://doi.org/10.1016/j.neuroscience.2007.07.059 PubMedCrossRefGoogle Scholar
  60. Popov VI, Kraev IV, Ignat’ev DA, Stewart MG (2011) Suspension of mitotic activity in dentate gyrus of the hibernating ground squirrel. Neural Plast 2011:867525.  https://doi.org/10.1155/2011/867525 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ransohoff RM (2009) Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31(5):711–721.  https://doi.org/10.1016/j.immuni.2009.09.010 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145.  https://doi.org/10.1146/annurev.immunol.021908.132528 PubMedCrossRefGoogle Scholar
  63. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9(4):339–349PubMedCrossRefGoogle Scholar
  64. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease. role of cytokines. Sci World J 2012:756357.  https://doi.org/10.1100/2012/756357 CrossRefGoogle Scholar
  65. Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev Camb Philos Soc 90(3):891–926.  https://doi.org/10.1111/brv.12137 PubMedCrossRefGoogle Scholar
  66. Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nunez-Diaz C, Trujillo-Estrada L, Davila JC, Vizuete M, Gutierrez A, Vitorica J (2016) Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 132(6):897–916.  https://doi.org/10.1007/s00401-016-1630-5 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia–synapse interactions in the developing and mature CNS. Glia 61(1):24–36.  https://doi.org/10.1002/glia.22389 PubMedCrossRefGoogle Scholar
  68. Seo JW, Kim JH, Seo M, Han HS, Park J, Suk K (2012) Time-dependent effects of hypothermia on microglial activation and migration. J Neuroinflammation 9:164.  https://doi.org/10.1186/1742-2094-9-164 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sheng JG, Mrak RE, Griffin WS (1997) Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol 94(1):1–5PubMedCrossRefGoogle Scholar
  70. Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay ME (2014) Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014:610343.  https://doi.org/10.1155/2014/610343 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55(10):1074–1084.  https://doi.org/10.1002/glia.20526 PubMedCrossRefGoogle Scholar
  72. Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33(3):256–266.  https://doi.org/10.1002/1098-1136(200103)33:3<256::AID-GLIA1024>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  73. Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77(1):1–8.  https://doi.org/10.1002/jnr.20093 PubMedCrossRefGoogle Scholar
  74. Streit WJ (2005) Microglia and neuroprotection: implications for Alzheimer’s disease. Brain Res Brain Res Rev 48(2):234–239.  https://doi.org/10.1016/j.brainresrev.2004.12.013 PubMedCrossRefGoogle Scholar
  75. Streit WJ (2006) Microglial senescence: does the brain. Trends Neurosci 29(9):506–510.  https://doi.org/10.1016/j.tins.2006.07.001 ) ’s immune system have an expiration date?PubMedCrossRefGoogle Scholar
  76. Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4(4):371–379.  https://doi.org/10.1007/s11481-009-9163-5 PubMedCrossRefGoogle Scholar
  77. Streit WJ, Xue QS (2014) Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 29:93–96.  https://doi.org/10.1016/j.coi.2014.05.005 PubMedCrossRefGoogle Scholar
  78. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45(2):208–212.  https://doi.org/10.1002/glia.10319 PubMedCrossRefGoogle Scholar
  79. Taylor RA, Sansing LH (2013) Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013:746068.  https://doi.org/10.1155/2013/746068 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Tischer J, Krueger M, Mueller W, Staszewski O, Prinz M, Streit WJ, Bechmann I (2016) Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer’s disease. Glia 64(9):1562–1572.  https://doi.org/10.1002/glia.23024 PubMedCrossRefGoogle Scholar
  81. Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55(4):360–368.  https://doi.org/10.1002/glia.20462 PubMedCrossRefGoogle Scholar
  82. Tremblay ME, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4(2):220–222.  https://doi.org/10.4161/cib.4.2.14506 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31(45):16064–16069.  https://doi.org/10.1523/JNEUROSCI.4158-11.2011 PubMedCrossRefGoogle Scholar
  84. Ueda S, Ibuka N (1995) An analysis of factors that induce hibernation in Syrian hamsters. Physiol Behav 58(4):653–657PubMedCrossRefGoogle Scholar
  85. von der Ohe CG, Darian-Smith C, Garner CC, Heller HC (2006) Ubiquitous and temperature-dependent neural plasticity in hibernators. J Neurosci 26(41):10590–10598.  https://doi.org/10.1523/JNEUROSCI.2874-06.2006 PubMedCrossRefGoogle Scholar
  86. von der Ohe CG, Garner CC, Darian-Smith C, Heller HC (2007) Synaptic protein dynamics in hibernation. J Neurosci 27(1):84–92.  https://doi.org/10.1523/JNEUROSCI.4385-06.2007 PubMedCrossRefGoogle Scholar
  87. Wang JY (2007) Hypoxia/reoxygenation induces nitric oxide and TNF-alpha release from cultured microglia but not astrocytes of the rat. Chin J Physiol 50(3):127–134PubMedGoogle Scholar
  88. Zhou F, Zhu X, Castellani RJ, Stimmelmayr R, Perry G, Smith MA, Drew KL (2001) Hibernation, a model of neuroprotection. Am J Pathol 158(6):2145–2151.  https://doi.org/10.1016/S0002-9440(10)64686-X PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275.  https://doi.org/10.1038/nn1629 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Instituto Cajal, CSICMadridSpain
  2. 2.Laboratorio Cajal de Circuitos Corticales (CTB), Centro de Tecnología BiomédicaUniversidad Politécnica de MadridMadridSpain
  3. 3.CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades NeurodegenerativasMadridSpain
  4. 4.Departamento de Biología CelularUniversidad Complutense ComplutenseMadridSpain
  5. 5.Facultad de FarmaciaUniversidad San Pablo CEUMadridSpain

Personalised recommendations