Abstract
The human amygdala consists of subdivisions contributing to various functions. However, principles of structural organization at the cellular and molecular level are not well understood. Thus, we re-analyzed the cytoarchitecture of the amygdala and generated cytoarchitectonic probabilistic maps of ten subdivisions in stereotaxic space based on novel workflows and mapping tools. This parcellation was then used as a basis for analyzing the receptor expression for 15 receptor types. Receptor fingerprints, i.e., the characteristic balance between densities of all receptor types, were generated in each subdivision to comprehensively visualize differences and similarities in receptor architecture between the subdivisions. Fingerprints of the central and medial nuclei and the anterior amygdaloid area were highly similar. Fingerprints of the lateral, basolateral and basomedial nuclei were also similar to each other, while those of the remaining nuclei were distinct in shape. Similarities were further investigated by a hierarchical cluster analysis: a two-cluster solution subdivided the phylogenetically older part (central, medial nuclei, anterior amygdaloid area) from the remaining parts of the amygdala. A more fine-grained three-cluster solution replicated our previous parcellation including a laterobasal, superficial and centromedial group. Furthermore, it helped to better characterize the paralaminar nucleus with a molecular organization in-between the laterobasal and the superficial group. The multimodal cyto- and receptor-architectonic analysis of the human amygdala provides new insights into its microstructural organization, intersubject variability, localization in stereotaxic space and principles of receptor-based neurochemical differences.
This is a preview of subscription content, access via your institution.













References
Adolphs R (2010) What does the amygdala contribute to social cognition? Ann N Y Acad Sci 1191:42–61. https://doi.org/10.1111/j.1749-6632.2010.05445.x
Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31:15481–15489. https://doi.org/10.1523/JNEUROSCI.3410-11.2011
Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley, Oxford, pp 1–66
Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, Habel U, Schneider F, Zilles K (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352. https://doi.org/10.1007/s00429-005-0025-5
Amunts K, Schleicher A, Zilles K (2007) Cytoarchitecture of the cerebral cortex—more than localization. Neuroimage 37:1061–1065. https://doi.org/10.1016/j.neuroimage.2007.02.037
Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9). https://doi.org/10.1371/journal.pbio.1000489
Bach DR, Behrens TE, Garrido L, Weiskopf N, Dolan RJ (2011) Deep and superficial amygdala nuclei projections revealed in vivo by probabilistic tractography. J Neurosci 31:618–623. https://doi.org/10.1523/JNEUROSCI.2744-10.2011
Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, Mutschler I (2007) Response properties of human amygdala subregions: evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One 2(3):e307. https://doi.org/10.1371/journal.pone.0000307
Benzing WC, Mufson EJ, Jennes L, Stopa EG, Armstrong DM (1992) Distribution of neurotensin immunoreactivity within the human amygdaloid complex: a comparison with acetylcholinesterase- and Nissl-stained tissue sections. J Comp Neurol 317:283–297. https://doi.org/10.1002/cne.903170306
Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8:229–242. https://doi.org/10.1101/lm.30901
Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K (2014) Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage 93 Pt 2:260–275. https://doi.org/10.1016/j.neuroimage.2013.05.052
Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230:427–439. https://doi.org/10.1007/s00221-013-3512-6
Brockhaus H (1938) Zur normalen und pathologischen Anatomie des Mandelkerngebietes. J Psychol Neurol 49:1–136
Bzdok D, Laird AR, Zilles K, Fox PT, Eickhoff SB (2013) An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum Brain Mapp 34(12):3247–3266. https://doi.org/10.1002/hbm.22138
Canessa N, Crespi C, Motterlini M, Baud-Bovy G, Chierchia G, Pantaleo G, Tettamanti M, Cappa SF (2013) The functional and structural neural basis of individual differences in loss aversion. J Neurosci 33:14307–14317. https://doi.org/10.1523/JNEUROSCI.0497-13.2013
Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23:615–628. https://doi.org/10.1093/cercor/bhs048
Castellano C, Brioni JD, Nagahara AH, McGaugh JL (1989) Post-training systemic and intra-amygdala administration of the GABA-B agonist baclofen impairs retention. Behav Neural Biol 52:170–179
Cortés R, Probst A, Palacios JM (1987) Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience 20:65–107
de Olmos JS (1990) Amygdala. In: Paxinos G (ed) The human nervous system. Academic Press Inc, San Diego, pp 583–710
de Olmos JS (2004) Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2 edn. Elsevier, San Diego, pp 739–868
deCampo DM, Fudge JL (2012) Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev 36:520–535. https://doi.org/10.1016/j.neubiorev.2011.08.007
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034
Eickhoff SB, Schleicher A, Scheperjans F, Palomero-Gallagher N, Zilles K (2007) Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex. Neuroimage 34:1317–1330. https://doi.org/10.1016/j.neuroimage.2006.11.016
Eickhoff SB, Rottschy C, Kujovic M, Palomero-Gallagher N, Zilles K (2008) Organizational principles of human visual cortex revealed by receptor mapping. Cereb Cortex 18:2637–2645
Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62:911–922. https://doi.org/10.1016/j.neuroimage.2012.01.024
Ferry B, Roozendaal B, McGaugh JL (1999) Involvement of alpha1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur J Pharmacol 372:9–16
Fruhholz S, Grandjean D (2013) Amygdala subregions differentially respond and rapidly adapt to threatening voices. Cortex 49:1394–1403. https://doi.org/10.1016/j.cortex.2012.08.003
Fuchs E, Flugge G (2003) Chronic social stress: effects on limbic brain structures. Physiol Behav 79:417–427
Fudge JL, Tucker T (2009) Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience 159:819–841. https://doi.org/10.1016/j.neuroscience.2009.01.013
Gallyas F (1979) Silver staining of myelin by means of physical development. Neurol Res 1:203–209
García-López M, Abellan A, Legaz I, Rubenstein JL, Puelles L, Medina L (2008) Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. J Comp Neurol 506:46–74. https://doi.org/10.1002/cne.21524
Goossens L, Kukolja J, Onur OA, Fink GR, Maier W, Griez E, Schruers K, Hurlemann R (2009) Selective processing of social stimuli in the superficial amygdala. Hum Brain Mapp 30:3332–3338. https://doi.org/10.1002/hbm.20755
Guarraci FA, Frohardt RJ, Kapp BS (1999) Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res 827:28–40
Heimer L, de Olmos JS, Alheid GF, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer RC (1999) The Basal Forebrain. Part II. In: Bloom FE, Björklund A, Hökfelt T (eds) Primate nervous system. Part III. Elsevier, Amsterdam, pp 57–226
Hesse E, Mikulan E, Decety J, Sigman M, Garcia MC, Silva W, Ciraolo C, Vaucheret E, Baglivo F, Huepe D, Lopez V, Manes F, Bekinschtein TA, Ibanez A (2016) Early detection of intentional harm in the human amygdala. Brain 139:54–61. https://doi.org/10.1093/brain/awv336
Holland PC, Gallagher M (1999) Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 3:65–73
Hömke L (2006) A multigrid method for anisotropic PDEs in elastic image registration. Numer Linear Algebra Appl 13:215–229
Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, Walter H, Cohen MX (2008) Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods 172:13–20
Hurlemann R, Schlaepfer TE, Matusch A, Reich H, Shah NJ, Zilles K, Maier W, Bauer A (2009) Reduced 5-HT(2A) receptor signaling following selective bilateral amygdala damage. Soc Cogn Affect Neurosci 4:79–84. https://doi.org/10.1093/scan/nsn039
Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481
Kalin NH, Shelton SE, Davidson RJ (2004) The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J Neurosci 24:5506–5515. https://doi.org/10.1523/JNEUROSCI.0292-04.2004
Keifer OP Jr, Hurt RC, Ressler KJ, Marvar PJ (2015) The physiology of fear: reconceptualizing the role of the central amygdala in fear learning. Physiology (Bethesda) 30:389–401
Klumpers F, Morgan B, Terburg D, Stein DJ, van Honk J (2015) Impaired acquisition of classically conditioned fear-potentiated startle reflexes in humans with focal bilateral basolateral amygdala damage. Soc Cogn Affect Neurosci 10:1161–1168. https://doi.org/10.1093/scan/nsu164
Koelsch S, Skouras S (2014) Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: an fMRI study with music. Hum Brain Mapp 35:3485–3498
Koelsch S, Skouras S, Fritz T, Herrera P, Bonhage C, Kussner MB, Jacobs AM (2013) The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. Neuroimage 81:49–60. https://doi.org/10.1016/j.neuroimage.2013.05.008
Kukolja J, Schlapfer TE, Keysers C, Klingmuller D, Maier W, Fink GR, Hurlemann R (2008) Modeling a negative response bias in the human amygdala by noradrenergic-glucocorticoid interactions. J Neurosci 28:12868–12876. https://doi.org/10.1523/JNEUROSCI.3592-08.2008
LaLumiere RT (2014) Optogenetic dissection of amygdala functioning. Front Behav Neurosci 8(107):1–7. https://doi.org/10.3389/fnbeh.2014.00107
LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184. https://doi.org/10.1146/annurev.neuro.23.1.155
Martínez-García F, Novejarque A, Lanuza E (2008) Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Res Bull 75:206–213. https://doi.org/10.1016/j.brainresbull.2007.10.019
McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21
McGaugh JL (2002) Memory consolidation and the amygdala: a systems perspective. Trends Neurosci 25:456
Merker B (1983) Silver staining of cell bodies by means of physical development. J Neurosci Methods 9:235–241
Mishra A, Rogers BP, Chen LM, Gore JC (2014) Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Hum Brain Mapp 35:1247–1260. https://doi.org/10.1002/hbm.22249
Mohlberg H, Eickhoff S, Schleicher A, Zilles K, Amunts K (2012) A new processing pipeline and release of cytoarchitectonic probabilistic maps—JuBrain. OHBM 2012, Peking, China (Poster)
Niehoff DL, Whitehouse PJ (1983) Multiple benzodiazepine receptors: autoradiographic localization in normal human amygdala. Brain Res 276:237–245
Nieuvenhuys R, Voogd J, van Huijzen C (2008) Telencephalon: amygdala and claustrum. In: The human central nervous system, 4th edn. Springer, pp 401–426
Olsson A, Phelps EA (2007) Social learning of fear. Nat Neurosci 10:1095–1102. https://doi.org/10.1038/nn1968
Onur OA, Walter H, Schlaepfer TE, Rehme AK, Schmidt C, Keysers C, Maier W, Hurlemann R (2009) Noradrenergic enhancement of amygdala responses to fear. Soc Cogn Affect Neurosci 4:119–126. https://doi.org/10.1093/scan/nsn049
Palomero-Gallagher N, Vogt BA, Schleicher A, Mayberg HS, Zilles K (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30:2336–2355
Pape HC, Stork O (2003) Genes and mechanisms in the amygdala involved in the formation of fear memory. Ann N Y Acad Sci 985:92–105
Pare D (2003) Role of the basolateral amygdala in memory consolidation. Prog Neurobiol 70:409–420
Pazos A, Probst A, Palacios JM (1987a) Serotonin receptors in the human brain-III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122
Pazos A, Probst A, Palacios JM (1987b) Serotonin receptors in the human brain-IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139
Power AE, McIntyre CK, Litmanovich A, McGaugh JL (2003) Cholinergic modulation of memory in the basolateral amygdala involves activation of both m1 and m2 receptors. Behav Pharmacol 14:207–213. https://doi.org/10.1097/01.fbp.0000073702.15098.21
Prager EM, Bergstrom HC, Wynn GH, Braga MF (2016) The basolateral amygdala gamma-aminobutyric acidergic system in health and disease. J Neurosci Res 94(6):548–567. https://doi.org/10.1002/jnr.23690
Price JL, Russchen FT, Amaral DG (1987) The Limbic region. II: the amygdaloid complex. In: Björklund A, Hökfelt T, Swanson LW (eds) Handbook of chemical neuroanatomy, vol 5. Integrated systems of the CNS, Part I. Elsevier, Oxford, pp 279–388
Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95:14476–14481
Rezayof A, Habibi P, Zarrindast MR (2011) Involvement of dopaminergic and glutamatergic systems of the basolateral amygdala in amnesia induced by the stimulation of dorsal hippocampal cannabinoid receptors. Neuroscience 175:118–126. https://doi.org/10.1016/j.neuroscience.2010.12.006
Rosene DL, Van Hoesen GW (1987) The hippocampal formation of the primate brain: a review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (eds) Cerebral cortex. Further aspects of cortical function, including hippocampus. Plenum Press, New York, pp 345–450
Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65
Simons LE, Moulton EA, Linnman C, Carpino E, Becerra L, Borsook D (2014) The human amygdala and pain: evidence from neuroimaging. Hum Brain Mapp 35(2):527–538. https://doi.org/10.1002/hbm.22199
Sims KS, Williams RS (1990) The human amygdaloid complex: a cytologic and histochemical atlas using Nissl, myelin, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate diaphorase staining. Neuroscience 36:449–472
Sorvari H, Soininen H, Paljarvi L, Karkola K, Pitkanen A (1995) Distribution of parvalbumin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 360:185–212. https://doi.org/10.1002/cne.903600202
Sorvari H, Soininen H, Pitkanen A (1996a) Calbindin-D28K-immunoreactive cells and fibres in the human amygdaloid complex. Neuroscience 75:421–443
Sorvari H, Soininen H, Pitkanen (1996b) Calretinin-immunoreactive cells and fibers in the human amygdaloid complex. J Comp Neurol 369:188–208
Soudry Y, Lemogne C, Malinvaud D, Consoli SM, Bonfils P (2011) Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 128:18–23. https://doi.org/10.1016/j.anorl.2010.09.007
Stefanacci L, Amaral DG (2002) Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J Comp Neurol 451:301–323. https://doi.org/10.1002/cne.10339
Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen. Springer, Berlin
Svendsen CN, Bird ED (1985) Acetylcholinesterase staining of the human amygdala. Neurosci Lett 54:313–318
Takahashi H, Yamada M, Suhara T (2012) Functional significance of central D1 receptors in cognition: beyond working memory. J Cereb Blood Flow Metab 32:1248–1258. https://doi.org/10.1038/jcbfm.2011.194
Talarovicova A, Krskova L, Kiss A (2007) Some assessments of the amygdala role in suprahypothalamic neuroendocrine regulation: a minireview. Endocr Regul 41:155–162
Tanaka M, Yoshida M, Emoto H, Ishii H (2000) Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol 405:397–406
Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71:379–392
Yilmazer-Hanke DM (2012) Amygdala. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 759–834
Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K (2008) Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42:1127–1141. https://doi.org/10.1016/j.neuroimage.2008.05.055
Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339
Zilles K, Amunts K (2010) Centenary of Brodmann’s map-conception and fate. Nat Rev Neurosci 11:139–145. https://doi.org/10.1038/nrn2776
Zilles K, Palomero-Gallagher N, Grefkes C, Scheperjans F, Boy C, Amunts K, Schleicher A (2002a) Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur Neuropsychopharmacol 12:587–599
Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002b) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Mazziotta JC, Toga AW (eds) Brain mapping: the methods, 2nd edn. Elsevier, Amsterdam, pp 573–602
Zilles K, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89. https://doi.org/10.1016/j.cortex.2014.07.007
Acknowlegdments
We would like to thank Markus Cremer, Sabine Wilms, Stephanie Krause, Angelika Börner, Jessica Teske-Bausch and René Hübbers for their excellent technical assistance.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This project has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No 720270 (Human Brain Project SGA1).
Rights and permissions
About this article
Cite this article
Kedo, O., Zilles, K., Palomero-Gallagher, N. et al. Receptor-driven, multimodal mapping of the human amygdala. Brain Struct Funct 223, 1637–1666 (2018). https://doi.org/10.1007/s00429-017-1577-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00429-017-1577-x
Keywords
- Amygdala
- Cytoarchitecture
- Probabilistic mapping
- Receptor architecture
- Human brain