Advertisement

Brain Structure and Function

, Volume 223, Issue 3, pp 1519–1536 | Cite as

Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice

  • Douglas G. Peters
  • Carson J. Purnell
  • Michael P. Haaf
  • Qing X. Yang
  • James R. Connor
  • Mark D. Meadowcroft
Original Article

Abstract

Impaired brain iron homeostatic mechanisms, independent of pathological hallmarks, are harmful to the brain because excess free iron can cause DNA, protein, and lipid damage via oxidative stress. The goal of this study was to evaluate the longitudinal effect of chronic iron overload and deficiency in the vertebrate brain. Ten-week-old C57BL6 male mice were randomly assigned to one of four unique dietary regiments for 1 year: iron-deficient, normal iron, and two different concentrations of lipophilic iron diet containing 3,5,5-trimethylhexanoyl ferrocene (TMHF). Longitudinal MRI parametrics were used to assess the location and extent of ferric iron distribution. Tissue collected at 12 months was used to directly measure iron-load, protein alterations, and histological metrics. While the iron-deficient diet did not alter brain iron stores, 0.11% TMHF and early exposure with 0.5% TMHF elevated brain iron by roughly 40 and 100%, respectively. R 2 rate increased more in the TMHF groups within iron rich brain regions. Increased brain iron concentration was linearly correlated with an increase in L-ferritin expression, and TMHF diet was found to increase L-ferritin within the olfactory bulb, neocortex, pallidum, thalamus, corpus callosum, CA3 regions of the hippocampus, and substantia nigra. Moreover, gliosis and oxidative stress were detected in the TMHF groups in the regions associated with iron-load. Spatial memory impairment was evident in the iron-loaded mice. This work illustrates that lipophilic iron elevates brain iron in a regionally specific fashion and positions dietary TMHF administration as a model for brain iron overloading.

Keywords

Iron Iron loading Ferrocene MRI Histology 

Notes

Acknowledgements

The authors would like to acknowledge the following funding sources: The George M. and Mary Jane Leader Foundation and NIH-R03 AG047461-02. We would like to acknowledge the help of Charles DeGanga, B. S. and Deandra Bolton, B. S. in the synthesis of the TMHF compound.

References

  1. Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL (2014) H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 35:1511-e1–1511-e12CrossRefGoogle Scholar
  2. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease [internet]. Acta Neuropathol 61:101–108.  https://doi.org/10.1007/BF00697388 (cited 2016 Oct 31) CrossRefPubMedGoogle Scholar
  3. Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK et al (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry 35:480–487CrossRefPubMedGoogle Scholar
  4. Bartzokis G, Beckson M, Hange DB, Marx P, Foster JA, Marder SR (1997) MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 15:29–35CrossRefPubMedGoogle Scholar
  5. Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A, Peters DG et al (2010) Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 31:1554–1562CrossRefPubMedGoogle Scholar
  6. Beinert H (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures [internet]. Science 80(277):653–659.  https://doi.org/10.1126/science.277.5326.653 CrossRefGoogle Scholar
  7. Bennett KM, Shapiro EM, Sotak CH, Koretsky AP (2008) Controlled aggregation of ferritin to modulate MRI relaxivity. Biophys J 95:342–351CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brickman AM, Meier IB, Korgaonkar MS, Provenzano FA, Grieve SM, Siedlecki KL et al (2012) Testing the white matter retrogenesis hypothesis of cognitive aging [Internet]. Neurobiol Aging 33(8):1699–1715. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/21783280
  9. Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chastre A, Bélanger M, Beauchesne E, Nguyen BN, Desjardins P, Butterworth RF (2012) Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications. PLoS One 7:1–9CrossRefGoogle Scholar
  11. Chen JH, Singh N, Tay H, Walczyk T (2014) Imbalance of iron influx and efflux causes brain iron accumulation over time in the healthy adult rat [Internet]. Metallomics 6(8):1417–1426. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed16&AN=373617066%5Cnhttp://openurl.bibsys.no/openurl?sid=OVID:embase&id=pmid:24752826&id=doi:10.1039%2Fc4mt00054d&issn=1756-5901&isbn=&volume=6&issue=8&spage=1417&pages=1417-1426&date
  12. Ciavardelli D, Consalvo A, Caldaro V, Di Vacri ML, Nisi S, Frazzini V et al (2012) Characterisation of element profile changes induced by long-term dietary supplementation of zinc in the brain and cerebellum of 3xTg-AD mice by alternated cool and normal plasma ICP-MS. Metallomics 4:1321–1332CrossRefPubMedGoogle Scholar
  13. Connor JR, Ponnuru P, Wang X-S, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134:959–968CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cunnane SC, Crawford MA (2014) Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol 77:88–98CrossRefPubMedGoogle Scholar
  15. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550CrossRefPubMedGoogle Scholar
  16. Daugherty AM, Haacke EM, Raz N (2015) Striatal iron content predicts its shrinkage and changes in verbal working memory after two years in healthy adults [internet]. J Neurosci 35:6731–6743.  https://doi.org/10.1523/JNEUROSCI.4717-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  17. de Lima MNM, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JCF et al (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration [internet]. Eur J Neurosci 21:2521–2528.  https://doi.org/10.1111/j.1460-9568.2005.04083.x CrossRefPubMedGoogle Scholar
  18. Domínguez-Rodrigo M, Pickering TR, Diez-Martín F, Mabulla A, Musiba C, Trancho G et al (2012) Earliest porotic hyperostosis on a 1.5-million-year-old Hominin, Olduvai Gorge, Tanzania. PLoS One 7:1–7CrossRefGoogle Scholar
  19. Enright HU, Miller WJ, Hebbel RP (1992) Nucleosomal histone protein protects DNA from iron-mediated damage [internet]. Nucleic Acids Res 20(13):3341–3346. [cited 2016 Sep 20]. http://www.ncbi.nlm.nih.gov/pubmed/1630905
  20. Gomi S, Gotoh F, Ishihara N, Tanaka K, Ishikawa Y, Takashima S et al (1991) Effects of lesioning the substantia innominata on autoregulation of local cerebral blood flow in rats. J Cereb Blood Flow Metab 11:66–71CrossRefPubMedGoogle Scholar
  21. Graham RM, Chua ACG, Carter KW, Delima RD, Johnstone D, Herbison CE et al (2010) Hepatic iron-loading in mice increases cholesterol biosynthesis [internet]. Hepatology 52(2):462–471. [cited 2014 Nov 11]. http://www.ncbi.nlm.nih.gov/pubmed/20683946
  22. Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T et al (2013) The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 37:2676–2688CrossRefPubMedGoogle Scholar
  23. Greminger AR, Lee DL, Shrager P, Mayer-Proschel M (2014) Gestational iron-deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J Nutr 144:1058–1066CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hallgren B, Sourander PB (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMedGoogle Scholar
  25. Han M, Kim J (2015) Effect of dietary iron-loading on recognition memory in growing rats [internet]. PLoS One 10(3):e0120609. http://dx.plos.org/10.1371/journal.pone.0120609
  26. Hare DJ, Lei P, Ayton S, Roberts BR, Grimm R, George JL et al (2014) An iron-dopamine index predicts risk of parkinsonian neurodegeneration in the substantia nigra pars compacta [internet]. Chem Sci 5:2160–2169.  https://doi.org/10.1039/C3SC53461H%5Cn. http://pubs.rsc.org/en/Content/ArticleLanding/2014/SC/c3sc53461h
  27. Hare DJ, Arora M, Jenkins NL, Finkelstein DI, Doble PA, Bush AI (2015) Is early-life iron exposure critical in neurodegeneration? [internet]. Nat Rev Neurol 11:536–544. [cited 2016 Oct 26]. http://www.ncbi.nlm.nih.gov/pubmed/26100754
  28. Heidari M, Johnstone DM, Bassett B, Graham RM, Chua ACG, House MJ et al (2016) Brain iron accumulation affects myelin-related molecular systems implicated in a rare neurogenetic disease family with neuropsychiatric features [internet]. Mol Psychiatry 21(11):1599–1607.  https://doi.org/10.1038/mp.2015.192 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN (2002) Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice [internet]. Genes, Brain Behav. 1:55–69.  https://doi.org/10.1046/j.1601-1848.2001.00005.x CrossRefGoogle Scholar
  30. Hoque R, Ledbetter C, Gonzalez-Toledo E, Misra V, Menon U, Kenner M et al (2007) The role of quantitative neuroimaging indices in the differentiation of ischemia from demyelination: an analytical study with case presentation [internet]. Int Rev Neurobiol 79:491–519. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/17531856
  31. House MJ, St. Pierre TG, Kowdley KV, Montine T, Connor J, Beard J et al (2007) Correlation of proton transverse relaxation rates (R 2) with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients. Magn Reson Med 57:172–180CrossRefPubMedGoogle Scholar
  32. Italia K, Colah R, Ghosh K (2015) Experimental animal model to study iron overload and iron chelation and review of other such models [internet]. Blood Cells Mol Dis 55(3):194–199. http://linkinghub.elsevier.com/retrieve/pii/S1079979615001035
  33. Kara F, Höfling C, Roßner S, Schliebs R, Van der Linden A, Groot HJM et al (2015) In vivo longitudinal monitoring of changes in the corpus callosum integrity during disease progression in a mouse model of Alzheimer’s disease [internet]. Curr Alzheimer Res 12(10):941–950. [cited 2016 Oct 26]. http://www.ncbi.nlm.nih.gov/pubmed/26502821
  34. Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA et al (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28:907–913CrossRefPubMedGoogle Scholar
  35. Koff MF, Amrami KK, Felmlee JP, Kaufman KR (2008) Bias of cartilage T2 values related to method of calculation. Magn Reson Imaging 26:1236–1243CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lange SJ, Que L (1998) Oxygen activating nonheme iron enzymes [internet]. Curr Opin Chem Biol 2(2):159–172. [cited 2014 Nov 10]. http://www.ncbi.nlm.nih.gov/pubmed/9667935
  37. Lavich IC, de Freitas BS, Kist LW, Falavigna L, Dargél VA, Köbe LM et al (2015) Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation [internet]. Neuroscience 301:542–552. http://linkinghub.elsevier.com/retrieve/pii/S0306452215005576
  38. Liachenko S, Ramu J (2017) Quantification and reproducibility assessment of the regional brain T2 relaxation in naïve rats at 7T [internet]. J Magn Reson Imaging 45(3):700–709. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/27384412
  39. Lykkesfeldt J, Morgan E, Christen S, Skovgaard LT (2007) Oxidative stress and damage in liver, but not in brain, of fischer 344 rats subjected to dietary iron supplementation with lipid-soluble TMH-ferrocene. Mol Toxicol 21:145–155CrossRefGoogle Scholar
  40. Ma Y, Smith D, Hof PR, Foerster B, Hamilton S, Blackband SJ et al (2008) In vivo 3D digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy [internet]. Front Neuroanat 2:1. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/18958199
  41. Malecki EA, Cable EE, Isom HC, Connor JR (2002) The lipophilic iron compound TMH-ferrocene [(3,5,5-trimethylhexanoyl)ferrocene] increases iron concentrations, neuronal L-ferritin, and heme oxygenase in brains of BALB/c mice. Biol Trace Elem Res 86:73–84CrossRefPubMedGoogle Scholar
  42. Matak P, Matak A, Moustafa S, Aryal DK, Benner EJ, Wetsel WC et al (2016) Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Nat Acad Sci USA 113(13):3428–3435CrossRefPubMedPubMedCentralGoogle Scholar
  43. McNeill A, Gorman G, Khan A, Horvath R, Blamire AM, Chinnery PF (2012) Progressive brain iron accumulation in neuroferritinopathy measured by the thalamic T2* relaxation rate. Am J Neuroradiol 33:1810–1813CrossRefPubMedPubMedCentralGoogle Scholar
  44. Meadowcroft MD, Connor JR, Yang QX (2015) Cortical iron regulation and inflammatory response in Alzheimer’s disease and APPSWE/PS1ΔE9 mice: a histological perspective [internet]. Front Neurosci 9:255. [cited 2015 Aug 13]. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4511841&tool=pmcentrez&rendertype=abstract
  45. Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN (2001) Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus 11:763–775CrossRefPubMedGoogle Scholar
  46. Nandar W, Neely EB, Unger E, Connor JR (2013) A mutation in the HFE gene is associated with altered brain iron profiles and increased oxidative stress in mice [internet]. Biochim Biophys Acta 1832(6):729–741. http://www.ncbi.nlm.nih.gov/pubmed/23429074
  47. Nielsen P, Heinrich HC (1993) Metabolism of iron from (3,5,5-trimethylhexanoyl)ferrocene in rats. A dietary model for severe iron overload [internet]. Biochem Pharmacol 45(2):385–391. [cited 2016 Oct 23]. http://www.ncbi.nlm.nih.gov/pubmed/8435091
  48. Novac A, Bota RG (2014) Transprocessing: a proposed neurobiological mechanism of psychotherapeutic processing. Ment Illn 6:20–35Google Scholar
  49. Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2:541–553CrossRefPubMedGoogle Scholar
  50. Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17CrossRefPubMedGoogle Scholar
  51. Sands SA, Leung-Toung R, Wang Y, Connelly J, LeVine SM (2016) Enhanced histochemical detection of iron in paraffin sections of mouse central nervous system tissue: application in the APP/PS1 mouse model of Alzheimer’s disease [internet]. ASN Neuro.  https://doi.org/10.1177/1759091416670978 PubMedPubMedCentralGoogle Scholar
  52. Sasaki M, Ehara S, Tamakawa Y, Takahashi S, Tohgi H, Sakai A et al (1995) MR anatomy of the substantia innominata and findings in Alzheimer disease: a preliminary report. Am J Neuroradiol 16:2001–2009PubMedGoogle Scholar
  53. Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, De Zwart JA et al (2013) Micro-compartment specific T2* relaxation in the brain. Neuroimage 77:268–278CrossRefPubMedGoogle Scholar
  54. Sawiak S, Wood N, Williams G, Morton A, Carpenter T (2009) Deformation-based morphometry in the R6/2 Huntington’s disease mouse brain [internet]. In: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine, p 544. /MyPathway2009/0544Google Scholar
  55. Smith K, Kapoor R, Felts P (1999) Demyelination: the role of reactive oxygen and nitrogen species [internet]. Brain Pathol 9(1):69–92. [cited 2014 Nov 11]. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=30&SID=1AQaMThBWuxWuQGlZnb&page=1&doc=10
  56. Stricker NH, Schweinsburg BC, Delano-Wood L, Wierenga CE, Bangen KJ, Haaland KY et al (2009) Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis [internet]. Neuroimage 45(1):10–16. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/19100839
  57. Sunyer B, Patil S, Höger H, Lubec G (2007) Barnes maze, a useful task to assess spatial reference memory in the mice [internet]. Nat Protoc.  https://doi.org/10.1038/nprot.2007.390 Google Scholar
  58. Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y (2001) Age-related changes in the concentrations of major and trace elements in the brain of rats and mice. Biol Trace Elem Res 80:145–158CrossRefPubMedGoogle Scholar
  59. Teipel SJ, Flatz WH, Heinsen H, Bokde ALW, Schoenberg SO, Stöckel S et al (2005) Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128:2626–2644CrossRefPubMedGoogle Scholar
  60. Vidal R, Miravalle L, Gao X, Barbeito AG, Baraibar MA, Hekmatyar SK et al (2008) Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice [internet]. J Neurosci 28(1):60–67. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2394191&tool=pmcentrez&rendertype=abstract
  61. Walter T, De Andraca I, Chadud P, Walter Perales CG et al (1989) Iron-deficiency anemia adverse effects on infant psychomotor development.pdf. Pediatrics 84:7–17PubMedGoogle Scholar
  62. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain [internet]. Science 215(4537):1237–1239. http://www.ncbi.nlm.nih.gov/pubmed/7058341
  63. Wood JC (2011) Impact of iron assessment by MRI [internet]. Hematology Am Soc Hematol Educ Program 2011:443–450. http://www.ncbi.nlm.nih.gov/pubmed/22160072
  64. Zeineh MM, Chen Y, Kitzler H, Hammond R, Vogel H, Rutt BK (2015) Activated iron-containing microglia in the human hippocampus identified by MRI in Alzheimer disease [internet]. Neurobiol Aging 36(9):2483–2500. http://www.sciencedirect.com/science/article/pii/S0197458015003061
  65. Zhang X-Y, Cao J-B, Zhang L-M, Li Y-F, Mi W-D (2015) Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice [internet]. J Neuroinflammation 12:20. http://www.jneuroinflammation.com/content/12/1/20

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of NeurosurgeryThe Pennsylvania State University - College of Medicine, Milton S. Hershey Medical CenterHersheyUSA
  2. 2.Department of Neural and Behavioral ScienceThe Pennsylvania State University - College of Medicine, Milton S. Hershey Medical CenterHersheyUSA
  3. 3.Department of Radiology, Center for NMR ResearchThe Pennsylvania State University - College of Medicine, Milton S. Hershey Medical CenterHersheyUSA
  4. 4.Department of ChemistryIthaca CollegeIthacaUSA

Personalised recommendations