Brain Structure and Function

, Volume 223, Issue 3, pp 1473–1485 | Cite as

Dual roles of the hippocampus and intraparietal sulcus in network integration and segregation support scene recognition

  • Xin Hao
  • Xu Wang
  • Yiying Song
  • Xiangzhen Kong
  • Jia Liu
Original Article


Effectively recognizing surroundings is a critical ability in human navigation. Previous neuroimaging studies have depicted distributed brain regions underpinning spatial navigation, but little is known about how these regions are formed into the navigation network (NN) supporting scene recognition. In this study, we addressed this issue by using a voxel-based global functional connectivity method to characterize the integration (i.e., within-network connectivity, WNC) of the NN and its segregation (i.e., between-network connectivity, BNC) from non-NN networks. We found that the majority of the voxels in the NN showed a stronger WNC than BNC, indicating the encapsulation of the NN. Importantly, individuals with stronger WNC and weaker BNC in the left hippocampus (Hipp) and intraparietal sulcus (IPS) performed better in scene recognition, suggesting that the left Hipp and IPS were involved in scene recognition by both integrating regions in the NN and separating the NN from non-NN networks. Further analyses showed that the integration of these two regions in the NN serves different functions, that is, while the WNC of the left Hipp was only related to scene recognition, the WNC of the left IPS was also related to the general executive control function of attention. In short, our study demonstrated the dual roles of the Hipp and IPS in integration and segregation of the NN to support scene recognition, suggesting that scene recognition involves not only regions specialized in spatial navigation, but also those with general functions.


Between-network connectivity Hippocampus Intraparietal sulcus Scene recognition Within-network connectivity 



Between-network connectivity


Caudal inferior parietal lobule


Echo-planar imaging


Functional connectivity


False discovery rate


Global brain connectivity


General linear model




Inferior frontal gyrus


Intraparietal sulcus


Middle frontal gyrus


Montreal Neurological Institute


Magnetization-prepared rapid gradient-echo


Navigation network


Occipital place area


Parahippocampal place area


Raven’s advanced progressive matrices


Regions of interest


Retrosplenial complex


Resting-state fMRI


Reaction times


Scene-specific recognition ability


Transverse occipital sulcus


Within-network connectivity



This study was funded by the National Natural Science Foundation of China (31230031), the National Basic Research Program of China (2014CB846101), the National Natural Science Foundation of China (31221003 and 31471067 and 31470055), the National Social Science Foundation of China (13&ZD073, 14ZDB160 and 15ZDB139), and Changjiang Scholars Programme of China.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

429_2017_1564_MOESM1_ESM.docx (746 kb)
Supplementary material 1 (DOCX 746 kb)


  1. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24(3):663–676CrossRefPubMedGoogle Scholar
  2. Aly M, Ranganath C, Yonelinas AP (2013) Detecting changes in scenes: the hippocampus is critical for strength-based perception. Neuron 78(6):1127–1137CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baldassano C, Beck DM, Fei-Fei L (2013) Differential connectivity within the parahippocampal place area. Neuroimage 75:228–237CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baldassano C, Esteva A, Fei-Fei L, Beck DM (2016) Two distinct scene-processing networks connecting vision and memory. eNeuro 3(5):e0178-16CrossRefGoogle Scholar
  5. Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38(2):347–358CrossRefPubMedGoogle Scholar
  6. Bird CM, Vargha-Khadem F, Burgess N (2008) Impaired memory for scenes but not faces in developmental hippocampal amnesia: a case study. Neuropsychologia 46(4):1050–1059CrossRefPubMedGoogle Scholar
  7. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boccia M, Sulpizio V, Nemmi F, Guariglia C, Galati G (2017) Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity. Brain Struct Funct 222(4):1945–1957CrossRefPubMedGoogle Scholar
  9. Brown TI, Carr VA, LaRocque KF, Favila SE, Gordon AM, Bowles B, Bailenson JN, Wagner AD (2016) Prospective representation of navigational goals in the human hippocampus. Science 352(6291):1323–1326CrossRefPubMedGoogle Scholar
  10. Cole MW, Yarkoni T, Repovš G, Anticevic A, Braver TS (2012) Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32(26):8988–8999CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dilks DD, Julian JB, Paunov AM, Kanwisher N (2013) The occipital place area is causally and selectively involved in scene perception. J Neurosci 33(4):1331–1336CrossRefPubMedPubMedCentralGoogle Scholar
  12. Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci USA 105(15):5915–5920CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361CrossRefPubMedPubMedCentralGoogle Scholar
  14. Durston S, Davidson M, Thomas K, Worden M, Tottenham N, Martinez A, Watts R, Ulug A, Casey B (2003) Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage 20(4):2135–2141CrossRefPubMedGoogle Scholar
  15. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMedGoogle Scholar
  16. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601CrossRefPubMedGoogle Scholar
  17. Epstein RA, Vass LK (2014) Neural systems for landmark-based wayfinding in humans. Phil Trans R Soc B 369(1635):20120533CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16(1):143–149CrossRefGoogle Scholar
  19. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM, Schlaggar BL, Petersen SE (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A (2013) Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci USA 110(36):E3435–E3444CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13(2):159–166CrossRefPubMedGoogle Scholar
  23. Hao X, Huang Y, Li X, Song Y, Kong X, Wang X, Yang Z, Zhen Z, Liu J (2016) Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study. Brain Behav 6(12):e00572CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hartley T, Maguire EA, Spiers HJ, Burgess N (2003) The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37(5):877–888CrossRefPubMedGoogle Scholar
  25. Hartley T, Bird CM, Chan D, Cipolotti L, Husain M, Vargha-Khadem F, Burgess N (2007) The hippocampus is required for short-term topographical memory in humans. Hippocampus 17(1):34–48CrossRefPubMedPubMedCentralGoogle Scholar
  26. Helfinstein SM, Schonberg T, Congdon E, Karlsgodt KH, Mumford JA, Sabb FW, Cannon TD, London ED, Bilder RM, Poldrack RA (2014) Predicting risky choices from brain activity patterns. Proc Natl Acad Sci USA 111(7):2470–2475CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hodgetts C, Shine J, Lawrence A, Downing P, Graham K (2016) Evidencing a place for the hippocampus within the core scene processing network. Hum Brain Mapp 37:3779–3794CrossRefPubMedPubMedCentralGoogle Scholar
  28. Holmes AJ, Lee PH, Hollinshead MO, Bakst L, Roffman JL, Smoller JW, Buckner RL (2012) Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. J Neurosci 32(50):18087–18100CrossRefPubMedPubMedCentralGoogle Scholar
  29. Huang L, Song Y, Li J, Zhen Z, Yang Z, Liu J (2014) Individual differences in cortical face selectivity predict behavioral performance in face recognition. Front Hum Neurosci 8:483CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMedGoogle Scholar
  31. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841CrossRefPubMedGoogle Scholar
  32. Kong F, Chen Z, Xue S, Wang X, Liu J (2015) Mother’s but not father’s education predicts general fluid intelligence in emerging adulthood: behavioral and neuroanatomical evidence. Hum Brain Mapp 36(11):4582–4591CrossRefPubMedGoogle Scholar
  33. Kong X-Z, Wang X, Pu Y, Huang L, Hao X, Zhen Z, Liu J (2017a) Human navigation network: the intrinsic functional organization and behavioral relevance. Brain Struct Funct 222(2):749–764CrossRefPubMedGoogle Scholar
  34. Kong X, Song Y, Zhen Z, Liu J (2017b) Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cereb Cortex 27(2):1326–1336PubMedGoogle Scholar
  35. Lauritzen T, D’Esposito M Functional networks underlying top-down visual spatial attention in the human brain. In: Soc. Neurosci. Abstr, 2007Google Scholar
  36. Lebedev AV, Westman E, Simmons A, Lebedeva A, Siepel FJ, Pereira JB, Aarsland D (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45PubMedPubMedCentralGoogle Scholar
  37. Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416(6876):90–94CrossRefPubMedGoogle Scholar
  38. Lew AR (2011) Looking beyond the boundaries: time to put landmarks back on the cognitive map? Psychol Bull 137(3):484CrossRefPubMedGoogle Scholar
  39. Liang JC, Wagner AD, Preston AR (2012) Content representation in the human medial temporal lobe. Cereb Cortex 23(1):80–96CrossRefPubMedPubMedCentralGoogle Scholar
  40. Luks TL, Simpson GV, Dale CL, Hough MG (2007) Preparatory allocation of attention and adjustments in conflict processing. Neuroimage 35(2):949–958CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maguire E (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238CrossRefPubMedGoogle Scholar
  42. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924CrossRefPubMedGoogle Scholar
  43. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marchette SA, Vass LK, Ryan J, Epstein RA (2014) Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nature Neurosci 17(11):1598–1606CrossRefPubMedPubMedCentralGoogle Scholar
  45. Marchette SA, Vass LK, Ryan J, Epstein RA (2015) Outside looking in: landmark generalization in the human navigational system. J Neurosci 35(44):14896–14908CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morgan LK, MacEvoy SP, Aguirre GK, Epstein RA (2011) Distances between real-world locations are represented in the human hippocampus. J Neurosci 31(4):1238–1245CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ohnishi T, Matsuda H, Hirakata M, Ugawa Y (2006) Navigation ability dependent neural activation in the human brain: an fMRI study. Neurosci Res 55(4):361–369CrossRefPubMedGoogle Scholar
  48. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175CrossRefPubMedGoogle Scholar
  49. Peschke C, Köster R, Korsch M, Frühholz S, Thiel CM, Herrmann M, Hilgetag CC (2016) Selective perturbation of cognitive conflict in the human brain—a combined fMRI and rTMS study. Sci Rep 6:38700CrossRefPubMedPubMedCentralGoogle Scholar
  50. Poppenk J, Evensmoen HR, Moscovitch M, Nadel L (2013) Long-axis specialization of the human hippocampus. Trends Cogn Sci 17(5):230–240CrossRefPubMedGoogle Scholar
  51. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13(1):25–42CrossRefPubMedGoogle Scholar
  52. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154CrossRefPubMedGoogle Scholar
  53. Raven JC, Court JH (1998) Raven’s progressive matrices and vocabulary scales. Oxford Psychologists Press, OxfordGoogle Scholar
  54. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069CrossRefPubMedGoogle Scholar
  55. Ryals AJ, Wang JX, Polnaszek KL, Voss JL (2015) Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus 25(9):1028–1041CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schindler A, Bartels A (2013) Parietal cortex codes for egocentric space beyond the field of view. Curr Biol 23(2):177–182CrossRefPubMedGoogle Scholar
  57. Silson EH, Steel AD, Baker CI (2016) Scene-selectivity and retinotopy in medial parietal cortex. Front Hum Neurosci 10:1–17CrossRefGoogle Scholar
  58. Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94(2):1358–1371CrossRefPubMedPubMedCentralGoogle Scholar
  59. Soutschek A, Taylor PC, Müller HJ, Schubert T (2013) Dissociable networks control conflict during perception and response selection: a transcranial magnetic stimulation Study. J Neurosci 33(13):5647–5654CrossRefPubMedGoogle Scholar
  60. Spelke ES, Lee SA (2012) Core systems of geometry in animal minds. Philos Trans R Soc B 367(1603):2784–2793CrossRefGoogle Scholar
  61. Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840CrossRefPubMedGoogle Scholar
  62. Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23(2):162–171CrossRefPubMedGoogle Scholar
  63. Sulpizio V, Boccia M, Guariglia C, Galati G (2016) Functional connectivity between posterior hippocampus and retrosplenial complex predicts individual differences in navigational ability. Hippocampus 26(7):841–847CrossRefPubMedGoogle Scholar
  64. Summerfield JJ, Hassabis D, Maguire EA (2010) Differential engagement of brain regions within a ‘core’network during scene construction. Neuropsychologia 48(5):1501–1509CrossRefPubMedPubMedCentralGoogle Scholar
  65. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157CrossRefPubMedPubMedCentralGoogle Scholar
  66. Taylor KJ, Henson RN, Graham KS (2007) Recognition memory for faces and scenes in amnesia: dissociable roles of medial temporal lobe structures. Neuropsychologia 45(11):2428–2438CrossRefPubMedGoogle Scholar
  67. Uttal DH, Sandstrom LB, Newcombe NS (2006) One hidden object, two spatial codes: young children’s use of relational and vector coding. J Cogn Dev 7(4):503–525CrossRefGoogle Scholar
  68. Vass LK, Epstein RA (2013) Abstract representations of location and facing direction in the human brain. J Neurosci 33(14):6133–6142CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wang L, Mruczek RE, Arcaro MJ, Kastner S (2014) Probabilistic maps of visual topography in human cortex. Cereb Cortex 25(10):3911–3931CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang X, Song Y, Zhen Z, Liu J (2016a) Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition. Hum Brain Mapp 37:1930–1940CrossRefPubMedGoogle Scholar
  71. Wang X, Zhen Z, Song Y, Huang L, Kong X, Liu J (2016b) The hierarchical structure of the face network revealed by its functional connectivity pattern. J Neurosci 36(3):890–900CrossRefPubMedGoogle Scholar
  72. Wegman J, Tyborowska A, Janzen G (2014) Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study. Hippocampus 24(7):853–868CrossRefPubMedGoogle Scholar
  73. Weiner KS, Barnett M, Witthoft N, Golarai G, Stigliani A, Kay KN, Gomez J, Natu VS, Amunts K, Zilles K (2017) Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. Neuroimage. Google Scholar
  74. Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci USA 105(39):14755–14762CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14(3):138–146CrossRefPubMedGoogle Scholar
  76. Woollett K, Maguire EA (2011) Acquiring “the knowledge” of London’s layout drives structural brain changes. Curr Biol 21(24):2109–2114CrossRefPubMedPubMedCentralGoogle Scholar
  77. Woolley DG, Mantini D, Coxon JP, D’Hooge R, Swinnen SP, Wenderoth N (2015) Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Hum Brain Mapp 36(4):1265–1277CrossRefPubMedGoogle Scholar
  78. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zeidman P, Mullally SL, Maguire EA (2015) Constructing, perceiving, and maintaining scenes: hippocampal activity and connectivity. Cereb Cortex 25(10):3836–3855CrossRefPubMedGoogle Scholar
  80. Zhen Z, Yang Z, Huang L, Kong X, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage 113:13–25CrossRefPubMedGoogle Scholar
  81. Zhen Z, Kong XZ, Huang L, Yang Z, Wang X, Hao X, Huang T, Song Y, Liu J (2017) Quantifying the variability of scene-selective regions: interindividual, interhemispheric, and sex differences. Hum Brain Mapp 38(4):2260–2275CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Applied Experimental Psychology, School of PsychologyBeijing Normal UniversityBeijingChina

Personalised recommendations