Advertisement

Brain Structure and Function

, Volume 223, Issue 3, pp 1329–1341 | Cite as

Role of TRH/UCN3 neurons of the perifornical area/bed nucleus of stria terminalis region in the regulation of the anorexigenic POMC neurons of the arcuate nucleus in male mice and rats

  • Zoltán Péterfi
  • Erzsébet Farkas
  • Kata Nagyunyomi-Sényi
  • Andrea Kádár
  • Szenci Ottó
  • András Horváth
  • Tamás Füzesi
  • Ronald M. Lechan
  • Csaba Fekete
Original Article
  • 230 Downloads

Abstract

Two anorexigenic peptides, thyrotropin-releasing hormone (TRH) and urocortin 3 (UCN3), are co-expressed in a continuous neuronal group that extends from the perifornical area to the bed nucleus of stria terminalis, raising the possibility that this cell group may be involved in the regulation of energy homeostasis. In this study, therefore, we tested the hypothesis that the TRH/UCN3 neurons regulate food intake by influencing feeding-related neuropeptide Y (NPY) and/or proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC). Triple-labeled immunofluorescent preparations demonstrated that only very few NPY neurons (4.3 ± 1.3%) were contacted by double-labeled TRH/UCN3 axons in the ARC. In contrast, more than half of the POMC neurons (52.4 ± 8.5%) were contacted by double-labeled axons. Immuno-electron microscopy demonstrated that the UCN3 axons established asymmetric synapses with POMC neurons, indicating the excitatory nature of these synaptic specializations. Patch clamp electrophysiology revealed that TRH and UCN3 have antagonistic effects on the POMC neurons. While UCN3 depolarizes and increases the firing rate of POMC neurons, TRH prevents these effects of UCN3. These data demonstrate that TRH/UCN3 neurons in the perifornical/BNST region establish abundant synaptic associations with the POMC neurons in the ARC and suggest a potentially important role for these neurons in the regulation of food intake through an antagonistic interaction between TRH and UCN3 on the electrophysiological properties of POMC neurons.

Keywords

Thyrotropin-releasing hormone Urocortin 3 Proopiomelanocortin Arcuate nucleus Perifornical region Bed nucleus of stria terminalis Antagonist effect 

Notes

Acknowledgements

This work was supported by Grants from the Hungarian Science Foundation (OTKA K109710) and the Hungarian National Brain Research Program (KTIA_13_NAP_A_I/3).

Author contributions

ZP performed the electrophysiological experiments. EF were involved in the immunofluorescent studies, performed the immunostaining in mice, did the electron microscopy and were involved in the generation of the two novel antibodies. KN performed the first immunofluorescent studies and performed the quantitative analyses under the supervision of TF. AK were involved in the immunofluorescent studies. OS and AH were involved in the generation of the two novel antibodies. RML: data interpretation, manuscript preparation; CF: Experimental design, data acquisition, drafting, revising and interpretation of the work, takes primary responsibility.

Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose.

References

  1. Ballerini L, Corradetti R, Nistri A, Pugliese AM, Stocca G (1994) Electrophysiological interactions between 5-hydroxytryptamine and thyrotropin releasing hormone on rat hippocampal CA1 neurons. Eur J Neurosci 6(6):953–960CrossRefPubMedGoogle Scholar
  2. Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402(4):442–459CrossRefPubMedGoogle Scholar
  3. Fekete C, Lechan RM (2014) Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35(2):159–194.  https://doi.org/10.1210/er.2013-1087 CrossRefPubMedGoogle Scholar
  4. Fekete EM, Inoue K, Zhao Y, Rivier JE, Vale WW, Szucs A, Koob GF, Zorrilla EP (2007) Delayed satiety-like actions and altered feeding microstructure by a selective type 2 corticotropin-releasing factor agonist in rats: intra-hypothalamic urocortin 3 administration reduces food intake by prolonging the post-meal interval. Neuropsychopharmacology 32(5):1052–1068.  https://doi.org/10.1038/sj.npp.1301214 CrossRefPubMedGoogle Scholar
  5. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning JC (2005) Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8(10):1289–1291.  https://doi.org/10.1038/nn1548 CrossRefPubMedGoogle Scholar
  6. Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X, Kilduff TS (2009) Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 29(12):3705–3714.  https://doi.org/10.1523/JNEUROSCI.0431-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Heuer H, Schafer MK, O’Donnell D, Walker P, Bauer K (2000) Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats. J Comp Neurol 428(2):319–336CrossRefPubMedGoogle Scholar
  8. Hrabovszky E, Wittmann G, Turi GF, Liposits Z, Fekete C (2005) Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology 146(1):341–347.  https://doi.org/10.1210/en.2004-0856 CrossRefPubMedGoogle Scholar
  9. Ishibashi H, Nakahata Y, Eto K, Nabekura J (2009) Excitation of locus coeruleus noradrenergic neurons by thyrotropin-releasing hormone. J Physiol 587(Pt 23):5709–5722.  https://doi.org/10.1113/jphysiol.2009.181420 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, Liberles SD, Lowell BB (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242.  https://doi.org/10.1038/nature12956 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lechan RM, Fekete C (2006) The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res 153:209–235CrossRefPubMedGoogle Scholar
  12. Liu J, Garza JC, Truong HV, Henschel J, Zhang W, Lu XY (2007) The melanocortinergic pathway is rapidly recruited by emotional stress and contributes to stress-induced anorexia and anxiety-like behavior. Endocrinology 148(11):5531–5540.  https://doi.org/10.1210/en.2007-0745 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310(5748):683–685.  https://doi.org/10.1126/science.1115524 CrossRefPubMedGoogle Scholar
  14. Sarvari A, Farkas E, Kadar A, Zseli G, Fuzesi T, Lechan RM, Fekete C (2012) Thyrotropin-releasing hormone-containing axons innervate histaminergic neurons in the tuberomammillary nucleus. Brain Res 1488:72–80.  https://doi.org/10.1016/j.brainres.2012.10.010 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671.  https://doi.org/10.1038/35007534 CrossRefPubMedGoogle Scholar
  16. Wittmann G, Liposits Z, Lechan RM, Fekete C (2002) Medullary adrenergic neurons contribute to the neuropeptide Y-ergic innervation of hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the rat. Neurosci Lett 324(1):69–73CrossRefPubMedGoogle Scholar
  17. Wittmann G, Fuzesi T, Liposits Z, Lechan RM, Fekete C (2009) Distribution and axonal projections of neurons coexpressing thyrotropin-releasing hormone and urocortin 3 in the rat brain. J Comp Neurol 517(6):825–840.  https://doi.org/10.1002/cne.22180 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wittmann G, Hrabovszky E, Lechan RM (2013) Distinct glutamatergic and GABAergic subsets of hypothalamic pro-opiomelanocortin neurons revealed by in situ hybridization in male rats and mice. J Comp Neurol 521(14):3287–3302.  https://doi.org/10.1002/cne.23350 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Zhang L, Kolaj M, Renaud LP (2013) GIRK-like and TRPC-like conductances mediate thyrotropin-releasing hormone-induced increases in excitability in thalamic paraventricular nucleus neurons. Neuropharmacology 72:106–115.  https://doi.org/10.1016/j.neuropharm.2013.04.023 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zoltán Péterfi
    • 1
  • Erzsébet Farkas
    • 1
    • 2
  • Kata Nagyunyomi-Sényi
    • 1
  • Andrea Kádár
    • 1
  • Szenci Ottó
    • 3
    • 4
  • András Horváth
    • 3
    • 4
  • Tamás Füzesi
    • 1
  • Ronald M. Lechan
    • 5
    • 6
  • Csaba Fekete
    • 1
    • 5
  1. 1.Department of Endocrine Neurobiology, Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
  2. 2.Multidisciplinary Doctoral School of Sciences and TechnologyPázmány Péter Catholic UniversityBudapestHungary
  3. 3.Department and Clinic for Production AnimalsUniversity of Veterinary MedicineBudapestHungary
  4. 4.BMTA–SZIE Large Animal Clinical Research GroupÜllőHungary
  5. 5.Department of Medicine, Division of Endocrinology, Diabetes and MetabolismTupper Research Institute, Tufts Medical CenterBostonUSA
  6. 6.Department of NeuroscienceTufts University School of MedicineBostonUSA

Personalised recommendations