Advertisement

Brain Structure and Function

, Volume 223, Issue 2, pp 727–737 | Cite as

Brain structural concomitants of resting state heart rate variability in the young and old: evidence from two independent samples

  • Hyun Joo Yoo
  • Julian F. Thayer
  • Steven Greening
  • Tae-Ho Lee
  • Allison Ponzio
  • Jungwon Min
  • Michiko Sakaki
  • Lin Nga
  • Mara Mather
  • Julian Koenig
Original Article

Abstract

Previous research has shown associations between brain structure and resting state high-frequency heart rate variability (HF HRV). Age affects both brain structure and HF HRV. Therefore, we sought to examine the relationship between brain structure and HF HRV as a function of age. Data from two independent studies were used for the present analysis. Study 1 included 19 older adults (10 males, age range 62–78 years) and 19 younger adults (12 males, age range 19–37). Study 2 included 23 older adults (12 males; age range 55–75) and 27 younger adults (17 males; age range 18–34). The root-mean-square of successive RR-interval differences (RMSSD) from ECG recordings was used as time-domain measure of HF HRV. MRI scans were performed on a 3.0-T Siemens Magnetom Trio scanner. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite, including 12 regions as regions of interests (ROI). Zero-order and partial correlations were used to assess the correlation of RMSSD with cortical thickness in selected ROIs. Lateral orbitofrontal cortex (OFC) cortical thickness was significantly associated with RMSSD. Further, both studies, in line with previous research, showed correlations between RMSSD and anterior cingulate cortex (ACC) cortical thickness. Meta-analysis on adjusted correlation coefficients from individual studies confirmed an association of RMSSD with the left rostral ACC and the left lateral OFC. Future longitudinal studies are necessary to trace individual trajectories in the association of HRV and brain structure across aging.

Keywords

Heart rate variability Vagal activity Cortical thickness Age Brain structure 

Notes

Acknowledgements

JK is supported by Physician-Scientist-Fellowship provided by the Medical School, University of Heidelberg, Germany. JK acknowledges the financial support through a Post-Doctoral Scholarship provided by the Daimler and Benz Foundation (Ladenburg, Germany) and the Thrasher Research Fund Early Career Award provided by the Thrasher Research Fund (Salt Lake City, UT, USA). The research studies were funded by NIA R01AG025340. Michiko Sakaki received a fellowship by the European Commision PCIG13-GA-2013-618600, JSPS 16H05959.

Compliance with ethical standards

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2017_1519_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 kb)

References

  1. Allen B, Jennings JR, Gianaros PJ, Thayer JF, Manuck SB (2015) Resting high-frequency heart rate variability is related to resting brain perfusion. Psychophysiology 52(2):277–287. doi: 10.1111/psyp.12321 CrossRefPubMedGoogle Scholar
  2. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, Terrero G, Schwarz NF, Walsh EG, Poppas A, Cohen RA, Sweet LH (2014) The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens 8(8):561–570. doi: 10.1016/j.jash.2014.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvares GA, Quintana DS, Kemp AH, Van Zwieten A, Balleine BW, Hickie IB, Guastella AJ (2013) Reduced heart rate variability in social anxiety disorder: associations with gender and symptom severity. PLoS One 8:e70468CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antelmi I, de Paula RS, Shinzato AR, Peres CA, Mansur AJ, Grupi CJ (2004) Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am J Cardiol 93:381–385CrossRefPubMedGoogle Scholar
  5. Beauchaine TP, Thayer JF (2015) Heart rate variability as a transdiagnostic biomarker of psychopathology. Int J Psychophysiol Off J Int Organ Psychophysiol 98:338–350Google Scholar
  6. Beissner F, Meissner K, Bär KJ, Napadow V (2013) The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 33(25):10503–10511. doi: 10.1523/JNEUROSCI.1103-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bertsch K, Hagemann D, Naumann E, Schächinger H, Schulz A (2012) Stability of heart rate variability indices reflecting parasympathetic activity. Psychophysiology 49:672–682CrossRefPubMedGoogle Scholar
  8. Clamor A, Lincoln TM, Thayer JF, Koenig J (2016) Resting vagal activity in schizophrenia: meta-analysis of heart rate variability as a potential endophenotype. Br J Psychiatry J Ment Sci 208:9–16CrossRefGoogle Scholar
  9. Cooper H, Hedges LV, Valentine JC (eds) (2009) The handbook of research synthesis and meta-analysis. Russell Sage Foundation, New YorkGoogle Scholar
  10. Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176CrossRefPubMedGoogle Scholar
  11. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMedGoogle Scholar
  12. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  13. Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  14. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage 9:195–207CrossRefPubMedGoogle Scholar
  16. Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284CrossRefPubMedGoogle Scholar
  17. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20:70–80CrossRefPubMedGoogle Scholar
  18. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMedGoogle Scholar
  19. Fischl B, Salat DH, van der Kouwe AJW, Makris N, Ségonne F, Quinn BT, Dale AM (2004a) Sequence-independent segmentation of magnetic resonance images. NeuroImage 23(Suppl 1):S69–S84CrossRefPubMedGoogle Scholar
  20. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004b) Automatically parcellating the human cerebral cortex. Cereb Cortex N Y N 14:11–22CrossRefGoogle Scholar
  21. Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21:187–221CrossRefPubMedGoogle Scholar
  22. Fjell AM, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, Agartz I, Salat DH, Greve DN, Fischl B, Dale AM, Walhovd KB (2009) High consistency of regional cortical thinning in aging across multiple samples. Cereb Cortex N Y N 19:2001–2012CrossRefGoogle Scholar
  23. FS Wiki (2016) Website. http://www.freesurfer.net/fswiki/eTIV. Last access 31 May 2017
  24. Gatz M, Reynolds C, Nikolic J, Lowe B, Karel M, Pedersen N (1995) An empirical test of telephone screening to identify potential dementia cases. Int Psychogeriatr 7:429–438CrossRefPubMedGoogle Scholar
  25. Gianaros PJ, Wager TD (2015) Brain-body pathways linking psychological stress and physical health. Curr Dir Psychol Sci 24(4):313–321CrossRefPubMedPubMedCentralGoogle Scholar
  26. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B (2006) Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage 32:180–194CrossRefPubMedGoogle Scholar
  27. Harms MP, Wang L, Campanella C, Aldridge K, Moffitt AJ, Kuelper J, Ratnanather JT, Miller MI, Barch DM, Csernansky JG (2010) Correspondence. Br J Psychiatry 196(5):414–415CrossRefGoogle Scholar
  28. Jarczok MN, Kleber ME, Koenig J, Loerbroks A, Herr RM, Hoffmann K, Fischer JE, Benyamini Y, Thayer JF (2015) Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory and other frequently used biomarkers in a cross sectional occupational sample. PLoS One 10:e0117196CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage 30:436–443CrossRefPubMedGoogle Scholar
  30. Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM (2010) Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 67:1067–1074CrossRefPubMedGoogle Scholar
  31. Koenig J, Kemp AH, Feeling NR, Thayer JF, Kaess M (2015) Resting state vagal tone in borderline personality disorder: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 64:18–26CrossRefPubMedGoogle Scholar
  32. Koenig J, Kemp AH, Beauchaine TP, Thayer JF, Kaess M (2016) Depression and resting state heart rate variability in children and adolescents—a systematic review and meta-analysis. Clin Psychol Rev 46:136–150CrossRefPubMedGoogle Scholar
  33. Kuo TBJ, Lai CJ, Huang Y-T, Yang CCH (2005) Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. J Cardiovasc Electrophysiol 16:864–869CrossRefPubMedGoogle Scholar
  34. Levy MN (1997) Neural control of cardiac function. Baillières Clin Neurol 6:227–244PubMedGoogle Scholar
  35. Mather M (2016) The Affective Neuroscience of Aging. Annu Rev Psychol 67:213–238CrossRefPubMedGoogle Scholar
  36. O’Brien IA, O’Hare P, Corrall RJ (1986) Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Br Heart J 55:348–354CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oppenheimer S, Cechetto D (2016) The insular cortex and the regulation of cardiac function. Compr Physiol 6(2):1081–1133. doi: 10.1002/cphy.c140076 CrossRefPubMedGoogle Scholar
  38. Peters R (2006) Ageing and the brain. Postgrad Med J 82:84–88CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sakaki M, Nga L, Mather M (2013) Amygdala functional connectivity with medial prefrontal cortex at rest predicts the positivity effect in older adults’ memory. J Cogn Neurosci 25:1206–1224CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sakaki M, Yoo HJ, Nga L, Lee T-H, Thayer JF, Mather M (2016) Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage 139:44–52CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schwarzer G (2007) Meta: an R package for meta-analysis. R News 7(3):40–45Google Scholar
  42. Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075CrossRefPubMedGoogle Scholar
  43. Tarvainen MP, Niskanen J-P, Lipponen JA, Ranta-Aho PO, Karjalainen PA (2014) Kubios HRV—heart rate variability analysis software. Comput Methods Programs Biomed 113:210–220CrossRefPubMedGoogle Scholar
  44. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93:1043–1065CrossRefGoogle Scholar
  45. Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61:201–216CrossRefPubMedGoogle Scholar
  46. Thayer JF, Lane RD (2009) Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev 33:81–88CrossRefPubMedGoogle Scholar
  47. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH (2009a) Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med Publ Soc Behav Med 37:141–153CrossRefGoogle Scholar
  48. Thayer JF, Sollers JJ, Labiner DM, Weinand M, Herring AM, Lane RD, Ahern GL (2009b) Age-related differences in prefrontal control of heart rate in humans: a pharmacological blockade study. Int J Psychophysiol Off J Int Organ Psychophysiol 72:81–88Google Scholar
  49. Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141(2):122–131. doi: 10.1016/j.ijcard.2009.09.543 CrossRefPubMedGoogle Scholar
  50. Thayer JF, Ahs F, Fredrikson M, Sollers JJ, Wager TD (2012) A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev 36:747–756CrossRefPubMedGoogle Scholar
  51. Virtanen R, Jula A, Kuusela T, Helenius H, Voipio-Pulkki LM (2003) Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity. J Hum Hypertens 17(3):171–179CrossRefPubMedGoogle Scholar
  52. Winkelmann T, Thayer JF, Pohlack S, Nees F, Grimm O, Flor H (2017) Structural brain correlates of heart rate variability in a healthy young adult population. Brain Struct Funct 222:1061–1068CrossRefPubMedGoogle Scholar
  53. Woodward SH, Kaloupek DG, Schaer M, Martinez C, Eliez S (2008) Right anterior cingulate cortical volume covaries with respiratory sinus arrhythmia magnitude in combat veterans. J Rehabil Res Dev 45:451–463CrossRefPubMedGoogle Scholar
  54. Zhang J (2007) Effect of age and sex on heart rate variability in healthy subjects. J Manip Physiol Ther 30:374–379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hyun Joo Yoo
    • 1
  • Julian F. Thayer
    • 2
  • Steven Greening
    • 3
  • Tae-Ho Lee
    • 4
  • Allison Ponzio
    • 1
  • Jungwon Min
    • 1
  • Michiko Sakaki
    • 5
  • Lin Nga
    • 1
  • Mara Mather
    • 1
  • Julian Koenig
    • 2
    • 6
  1. 1.Emotion and Cognition LabUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of PsychologyThe Ohio State UniversityColumbusUSA
  3. 3.Department of Psychology, Cognitive and Brain SciencesLouisiana State UniversityBaton RougeUSA
  4. 4.Department of Psychology and NeuroscienceUniversity of North CarolinaChapel HillUSA
  5. 5.School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
  6. 6.Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial MedicineUniversity of HeidelbergHeidelbergGermany

Personalised recommendations