Advertisement

Brain Structure and Function

, Volume 223, Issue 1, pp 255–265 | Cite as

Nanoscale structural mapping as a measure of maturation in the murine frontal cortex

  • G. Smolyakov
  • E. Dague
  • C. Roux
  • M. H. Seguelas
  • C. Galés
  • J. M. Senard
  • D. N. Arvanitis
Original Article

Abstract

Atomic force microscopy (AFM) is emerging as an innovative tool to phenotype the brain. This study demonstrates the utility of AFM to determine nanomechanical and nanostructural features of the murine dorsolateral frontal cortex from weaning to adulthood. We found an increase in tissue stiffness of the primary somatosensory cortex with age, along with an increased cortical mechanical heterogeneity. To characterize the features potentially responsible for this heterogeneity, we applied AFM scan mode to directly image the topography of thin sections of the primary somatosensory cortical layers II/III, IV and V/VI. Topographical mapping of the cortical layers at successive ages showed progressive smoothing of the surface. Topographical images were also compared with histochemically derived morphological information, which demonstrated the deposition of perineuronal nets, important extracellular components and markers of maturity. Our work demonstrates that high-resolution AFM images can be used to determine the nanostructural properties of cortical maturation, well beyond embryonic and postnatal development. Furthermore, it may offer a new method for brain phenotyping and screening to uncover topographical changes in early stages of neurodegenerative diseases.

Keywords

Frontal cortex Atomic force microscopy Perineuronal nets Maturation 

Notes

Acknowledgements

We thank Randall Willis and Laure Verret for critically reading the manuscript. We thank Cedric Baudelin and Lionel Mouledous for their technical expertise. We thank Lucie Fontaine at the Histology Platform (I2MC), and, Yvan Nicaise and Mélanie Pucelle at the Imaging Platform (CMEAB). This work was supported by the “Fondation pour la Recherche Médicale” (G.S.; Grant ING21040129094) and by the “les initiatives d’excellence” at the University de Toulouse (IDEX, S11V9R49). ED and DA are researchers at the Centre National de la Recherche Scientifique (CNRS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alsteens D, Dupres V, Evoy KM, Wildling L, Gruber HJ, Dufrêne YF (2008) Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology 19:384005. doi: 10.1088/0957-4484/19/38/384005 CrossRefPubMedGoogle Scholar
  2. Antunes A, Gozzo FV, Borella MI, Nakamura M, Safatle MV, Barros PSM, Toma HE (2007) Atomic Force Imaging of Ocular Tissues: morphological study of healthy and cataract lenses. Mod Res Educ Top Microsc. Mendez-Villas et Diaz, Spain, pp 29–36Google Scholar
  3. Beaussart A, El-Kirat-Chatel S, Sullan RMA, Alsteens D, Herman P, Derclaye S, Dufrêne YF (2014) Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy. Nat Protoc 9:1049–1055. doi: 10.1038/nprot.2014.066 CrossRefPubMedGoogle Scholar
  4. Bernard C, Prochiantz A (2016) Otx2-PNN interaction to regulate cortical plasticity. Neural Plast 2016:7931693. doi: 10.1155/2016/7931693 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bitanihirwe BKY, Woo T-UW (2014) Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 45:85–99. doi: 10.1016/j.neubiorev.2014.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bonneh-Barkay D, Wiley CA (2009) Brain extracellular matrix in neurodegeneration. Brain Pathol Zurich Switz 19:573–585. doi: 10.1111/j.1750-3639.2008.00195.x CrossRefGoogle Scholar
  7. Brückner G, Seeger G, Brauer K, Härtig W, Kacza J, Bigl V (1994) Cortical areas are revealed by distribution patterns of proteoglycan components and parvalbumin in the Mongolian gerbil and rat. Brain Res 658:67–86. doi: 10.1016/S0006-8993(09)90012-9 CrossRefPubMedGoogle Scholar
  8. Burnham NA, Colton RJ (1998) Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J Vac Sci Technol Vac Surf Film. doi: 10.1116/1.576168 Google Scholar
  9. Callaghan BL, Graham BM, Li S, Richardson R (2013) From resilience to vulnerability: mechanistic insights into the effects of stress on transitions in critical period plasticity. Front Psychiatry 4:90. doi: 10.3389/fpsyt.2013.00090 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM (2016) Perineuronal nets suppress plasticity of excitatory synapses on CA2 pyramidal neurons. J Neurosci Off J Soc Neurosci 36:6312–6320. doi: 10.1523/JNEUROSCI.0245-16.2016 CrossRefGoogle Scholar
  11. Carulli D, Rhodes KE, Fawcett JW (2007) Upregulation of aggrecan, link protein 1, and hyaluronan synthases during formation of perineuronal nets in the rat cerebellum. J Comp Neurol 501:83–94. doi: 10.1002/cne.21231 CrossRefPubMedGoogle Scholar
  12. Croteau-Chonka EC, Dean DC III, Remer J, Dirks H, O’Muircheartaigh J, Deoni SCL (2016) Examining the relationships between cortical maturation and white matter myelination throughout early childhood. NeuroImage 125:413–421. doi: 10.1016/j.neuroimage.2015.10.038 CrossRefPubMedGoogle Scholar
  13. Di Cristo G, Chattopadhyaya B, Kuhlman SJ, Fu Y, Bélanger M-C, Wu CZ, Rutishauser U, Maffei L, Huang ZJ (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10:1569–1577. doi: 10.1038/nn2008 CrossRefPubMedGoogle Scholar
  14. Elkin BS, Azeloglu EU, Costa KD, Morrison B (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24:812–822. doi: 10.1089/neu.2006.0169 CrossRefPubMedGoogle Scholar
  15. Elkin BS, Ilankovan A, Morrison B (2010) Age-dependent regional mechanical properties of the rat hippocampus and cortex. J Biomech Eng 132:011010. doi: 10.1115/1.4000164 CrossRefPubMedGoogle Scholar
  16. Emerson RJ, Camesano TA (2006) On the importance of precise calibration techniques for an atomic force microscope. Ultramicroscopy 106:413–422. doi: 10.1016/j.ultramic.2005.11.008 CrossRefPubMedGoogle Scholar
  17. Formosa C, Schiavone M, Martin-Yken H, François JM, Duval RE, Dague E (2013) Nanoscale effects of caspofungin against two yeast species, Saccharomyces Cerevisiae and Candida albicans. Antimicrob Agent Chemother 57:3498–3506. doi: 10.1128/AAC.00105-13 CrossRefGoogle Scholar
  18. Fox K, Wong ROL (2005) A comparison of experience-dependent plasticity in the visual and somatosensory systems. Neuron 48:465–477. doi: 10.1016/j.neuron.2005.10.013 CrossRefPubMedGoogle Scholar
  19. Franze K, Janmey PA, Guck J (2013) Mechanics in neuronal development and repair. Annu Rev Biomed Eng 15:227–251. doi: 10.1146/annurev-bioeng-071811-150045 CrossRefPubMedGoogle Scholar
  20. Galtrey CM, Kwok JCF, Carulli D et al (2008) Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci 27:1373–1390. doi: 10.1111/j.1460-9568.2008.06108.x CrossRefPubMedGoogle Scholar
  21. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863. doi: 10.1038/13158 CrossRefPubMedGoogle Scholar
  22. Hertz H (1882) Uber die beruhrung fester elastischer korper (on the contact of elastic solids). J Reine Angew Math 92:156–171Google Scholar
  23. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888. doi: 10.1038/nrn1787 CrossRefPubMedGoogle Scholar
  24. Holtzmann K, Gautier HOB, Christ AF, Guck J, Káradóttir RT, Franze K (2016) Brain tissue stiffness is a sensitive marker for acidosis. J Neurosci Methods 271:50–54. doi: 10.1016/j.jneumeth.2016.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Iwashita M, Kataoka N, Toida K, Kosodo Y (2014) Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Dev Camb Engl 141:3793–3798. doi: 10.1242/dev.109637 Google Scholar
  26. Johnson CM, Loucks FA, Peckler H, Thomas AW, Janak PH, Wilbrecht L (2016a) Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence. Dev Cogn Neurosci 18:113–120. doi: 10.1016/j.dcn.2016.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Johnson CM, Peckler H, Tai L-H, Wilbrecht L (2016b) Rule learning enhances structural plasticity of long-range axons in frontal cortex. Nat Commun 7:10785. doi: 10.1038/ncomms10785 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lei Y, Han H, Yuan F, Javeed A, Zhao Y (2016) The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. doi: 10.1016/j.pneurobio.2015.12.007 PubMedGoogle Scholar
  29. Li Q, Bozek K, Xu C, Guo Y, Sun J, Pääbo S, Sherwood CC, Hof PR, Ely JJ, Li Y, Willmitzer L, Giavalisco P, Khaitovich P (2017) Changes in lipidome composition during brain development in humans, chimpanzees, and macaque monkeys. Mol Biol Evol 34:1155. doi: 10.1093/molbev/msx065 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Litinetsky L, Barkay Z, Kalicharan D, Rosenzweig E, Ishay JS (2002) AFM study of microstructures on the cornea of the compound eye and ocelli of the hornet Vespa orientalis (Insecta, Hymenoptera). Physiol Chem Phys Med NMR 34:61–69PubMedGoogle Scholar
  31. Lu YB, Franze K, Seifert G, Steinhauser C, Kirchhoff F, Wolburg H, Guck J, Janmey P, Wei EQ, Kas J, Reichenbach A (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci USA 103:17759–17764. doi: 10.1073/pnas.0606150103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ludwig T, Kirmse R, Poole K, Schwarz US (2008) Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflüg Arch Eur J Physiol 456:29–49. doi: 10.1007/s00424-007-0398-9 CrossRefGoogle Scholar
  33. MacGregor DG, Chesler M, Rice ME (2001) HEPES prevents edema in rat brain slices. Neurosci Lett 303:141–144CrossRefPubMedGoogle Scholar
  34. Magdesian MH, Sanchez FS, Lopez M et al (2012) Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys J 103:405–414. doi: 10.1016/j.bpj.2012.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Marrese M, Guarino V, Ambrosio L (2017) atomic force microscopy: a powerful tool to address scaffold design in tissue engineering. J Funct Biomater. doi: 10.3390/jfb8010007 PubMedPubMedCentralGoogle Scholar
  36. Marsh R, Gerber AJ, Peterson BS (2008) Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders. J Am Acad Child Adolesc Psychiatry 47:1233–1251. doi: 10.1097/CHI.0b013e318185e703 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mass T, Drake JL, Peters EC, Jiang W, Falkowski PG (2014) Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata. Proc Natl Acad Sci 111:12728–12733. doi: 10.1073/pnas.1408621111 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moeendarbary E, Weber IP, Sheridan GK, Koser DE, Soleman S, Haenzi B, Bradbury EJ, Fawcett J, Franze K (2017) The soft mechanical signature of glial scars in the central nervous system. Nat Commun. doi: 10.1038/ncomms14787 Google Scholar
  39. Morawski M, Filippov M, Tzinia A, Tsilibary E, Vargova L (2014) ECM in brain aging and dementia. Prog Brain Res 214:207–227. doi: 10.1016/B978-0-444-63486-3.00010-4 CrossRefPubMedGoogle Scholar
  40. Nie H-Y, Taylor AR, Lau WM, MacFabe DF (2011) Subcellular features revealed on unfixed rat brain sections by phase imaging. Analyst 136:2270–2276. doi: 10.1039/c1an15125h CrossRefPubMedGoogle Scholar
  41. Nieto-Gonzalez JL, Jensen K (2013) BDNF depresses excitability of parvalbumin-positive interneurons through an M-like current in rat dentate gyrus. PLoS One 8:e67318. doi: 10.1371/journal.pone.0067318 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nimmerjahn A (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. doi: 10.1126/science.1110647 CrossRefPubMedGoogle Scholar
  43. Park E, Choi SK, Kang SW et al (2015) Cerebral ischemia-induced mitochondrial changes in a global ischemic rat model by AFM. Biomed Pharmacother 71:15–20. doi: 10.1016/j.biopha.2015.02.007 CrossRefPubMedGoogle Scholar
  44. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957. doi: 10.1038/nrn2513 PubMedPubMedCentralGoogle Scholar
  45. Roa JJ, Oncins G, Diaz J, Sanz F, Segarra M (2011) Calculation of young’s modulus value by means of AFM. Recent Pat Nanotechnol 5:27–36. doi: 10.2174/187221011794474985 CrossRefPubMedGoogle Scholar
  46. Schiavone M, Vax A, Formosa C, Martin-Yken H, Dague E, François JM (2014) A combined chemical and enzymatic method to determine quantitatively the polysaccharide components in the cell wall of yeasts. FEMS Yeast Res 14:933–947. doi: 10.1111/1567-1364.12182 CrossRefPubMedGoogle Scholar
  47. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. doi: 10.1016/j.pneurobio.2013.04.001 PubMedPubMedCentralGoogle Scholar
  48. Somerville LH (2016) Searching for signatures of brain maturity: what are we searching for? Neuron 92:1164–1167. doi: 10.1016/j.neuron.2016.10.059 CrossRefPubMedGoogle Scholar
  49. Spedden E, Staii C (2013) Neuron biomechanics probed by atomic force microscopy. Int J Mol Sci 14:16124–16140. doi: 10.3390/ijms140816124 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Takesian AE, Hensch TK (2013) Balancing plasticity/stability across brain development. Prog Brain Res 207:3–34. doi: 10.1016/B978-0-444-63327-9.00001-1 CrossRefPubMedGoogle Scholar
  51. Thalhammer S, Heckl WM, Zink A, Nerlich AG (2001) Atomic force microscopy for high resolution imaging of collagen fibrils—a new technique to investigate collagen structure in historic bone tissues. J Archaeol Sci 28:1061–1068. doi: 10.1006/jasc.2000.0644 CrossRefGoogle Scholar
  52. Touhami A, Nysten B, Dufrêne YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543. doi: 10.1021/la034136x CrossRefGoogle Scholar
  53. Ungureanu A-A, Benilova I, Krylychkina O, Braeken D, De Strooper B, Van Haesendonck C, Dotti CG, Bartic C (2016) Amyloid beta oligomers induce neuronal elasticity changes in age-dependent manner: a force spectroscopy study on living hippocampal neurons. Sci Rep 6:25841. doi: 10.1038/srep25841 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Weickenmeier J, de Rooij R, Budday S, Steinmann P, Ovaert TC, Kuhl E (2016) Brain stiffness increases with myelin content. Acta Biomater 42:265–272. doi: 10.1016/j.actbio.2016.07.040 CrossRefPubMedGoogle Scholar
  55. Wu X, Muthuchamy M, Reddy DS (2016) Atomic force microscopy protocol for measurement of membrane plasticity and extracellular interactions in single neurons in epilepsy. Front Aging Neurosci 8:88. doi: 10.3389/fnagi.2016.00088 PubMedPubMedCentralGoogle Scholar
  56. Yersin A, Hirling H, Kasas S et al (2007) Elastic properties of the cell surface and trafficking of single AMPA receptors in living hippocampal neurons. Biophys J 92:4482–4489. doi: 10.1529/biophysj.106.092742 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zhang P, Yang Y, Candiello J, Thorn TL, Gray N, Halfter WM, Hu H (2013) Biochemical and biophysical changes underlie the mechanisms of basement membrane disruptions in a mouse model of dystroglycanopathy. Matrix Biol J Int Soc Matrix Biol 32:196–207. doi: 10.1016/j.matbio.2013.02.002 CrossRefGoogle Scholar
  58. Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130:635–653. doi: 10.1007/s00418-008-0485-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.LAAS-CNRS, Université de Toulouse, CNRSToulouseFrance
  2. 2.ITAV-CNRS, Université de Toulouse, CNRSToulouseFrance
  3. 3.Laboratoire Des IMRCP, Université de ToulouseCNRS UMR 5623, Université de ToulouseToulouse Cedex 9France
  4. 4.Institut Des Maladies Métaboliques Et Cardiovasculaires, INSERMUMR1048, Université de ToulouseToulouse Cedex 9France

Personalised recommendations