The birth of the synapse

Abstract

It has long been held that the rise of neurons as a specialized cell type also marked the onset of the grand evolutionary journey for chemical synapses. Research over recent decades has shown, however, that the most dynamic chapters of synaptic history have been ‘written’ out of the context of neurobiology and neuronal evolution, dating back to the early metazoa and unicellular living forms. Here, I consider and discuss emerging evidence suggesting the exaptive origin of chemical synapses, via tinkering and neo-functionalization of already existent junctional morphologies and constituents of primeval paracrine signalling. Through combination and collateral use of long-established structures and functions, a remarkable enrichment of regulatory and control mechanisms of complex living organisms was achieved, without large-scale reorganization of the genome, with tremendous impact on the evolution and life on our planet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abascal F, Zardoya R (2013) Evolutionary analyses of gap junction protein families. Biochim Et Biophys Acta Biomembr 1828:4–14

    CAS  Article  Google Scholar 

  2. Bennett MV (1972) Electrical versus chemical neurotransmission. Res Publ Assoc Res Nerv Mental Dis 50:58–90

    CAS  Google Scholar 

  3. Bennett MV (2000) Electrical synapses, a personal perspective (or history). Brain Res Brain Res Rev 32(1):16–28

    CAS  Article  PubMed  Google Scholar 

  4. Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron 41:495–511

    CAS  Article  PubMed  Google Scholar 

  5. Bittman K, Owens DF, Kriegstein AR, LoTurco JJ (1997) Cell coupling and uncoupling in the ventricular zone of developing neocortex. J Neurosci 17:7037–7044

    CAS  PubMed  Google Scholar 

  6. Bonner J (2000) First signal: the evolution of multicellular development. Princeton University Press, Oxford

    Google Scholar 

  7. Buhl DL, Buzsaki G (2005) Developmental emergence of hippocampal fast-field “ripple” oscillations in the behaving rat pups. Neuroscience 134:1423–1430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776

    CAS  Article  PubMed  Google Scholar 

  9. Cowan W, Kandel E (2001) A brief history of synapse and synaptic transmission. The John Hopkins University Press, Baltimore

    Google Scholar 

  10. Darwin C (1859) On the origin of species by means of natural selection. J. Murray, London

    Google Scholar 

  11. Darwin C (1862) On the various contrivances by which British and foreign Orchids are fertilised by Insects, and on the good effects of intercrossing. John Murray, London

  12. Eccles JC (1964) The physiology of synapses. Springer, Berlin

    Google Scholar 

  13. Emes RD, Grant SG (2012) Evolution of synapse complexity and diversity. Annu Rev Neurosci 35:111–131

    CAS  Article  PubMed  Google Scholar 

  14. Gould S (2002) The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  15. Gould S, Vrba E (1982) Exaptation—a missing term in the science of form. Paleobiology 8:4–15

    Article  Google Scholar 

  16. Grant SG (2009) A general basis for cognition in the evolution of synapse signaling complexes. Cold Spring Harb Symp Quant Biol 74:249–257

    CAS  Article  PubMed  Google Scholar 

  17. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654

    Article  Google Scholar 

  18. Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R (2004) Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 1662:113–137

    CAS  Article  PubMed  Google Scholar 

  19. Kloepper TH, Kienle CN, Fasshauer D (2007) An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 18:3463–3471

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Kosik KS (2009) Exploring the early origins of the synapse by comparative genomics. Biol Lett 5:108–111

    CAS  Article  PubMed  Google Scholar 

  21. Lalli C, Parson T (2006) Biological oceanography: an introduction. Elsevier, Amsterdam

    Google Scholar 

  22. Lane N (2015) The vital question: why is life the way it is?. W.W. Notron & Company, Inc., New York

    Google Scholar 

  23. Moroz LL, Kohn AB (2016) Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci 371:20150041

    Article  PubMed  PubMed Central  Google Scholar 

  24. Niculescu D, Lohmann C (2014) Gap junctions in developing thalamic and neocortical neuronal networks. Cereb Cortex 24:3097–3106

    Article  PubMed  Google Scholar 

  25. Ovsepian SV, Dolly JO (2011) Dendritic SNAREs add a new twist to the old neuron theory. Proc Natl Acad Sci USA 108:19113–19120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Ovsepian SV, Vesselkin NP (2014) Wiring prior to firing: the evolutionary rise of electrical and chemical modes of synaptic transmission. Rev Neurosci 25:821–832

    Article  PubMed  Google Scholar 

  27. Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15:250–263

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Rash JE, Dillman RK, Bilhartz BL, Duffy HS, Whalen LR, Yasumura T (1996) Mixed synapses discovered and mapped throughout mammalian spinal cord. Proc Natl Acad Sci USA 93:4235–4239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Ryan TJ, Grant SG (2009) The origin and evolution of synapses. Nat Rev Neurosci 10:701–712

    CAS  Article  PubMed  Google Scholar 

  30. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF, Tidor B, Degnan BM, Oakley TH, Kosik KS (2007) A post-synaptic scaffold at the origin of the animal kingdom. PLoS One 2:e506

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shepherd GM (1988) Neurobiology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  32. Shestopalov VI, Panchin Y (2008) Pannexins and gap junction protein diversity. Cell Mol Life Sci 65:376–394

    CAS  Article  PubMed  Google Scholar 

  33. Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712

    CAS  Article  PubMed  Google Scholar 

  34. Szabo TM, Faber DS, Zoran MJ (2004) Transient electrical coupling delays the onset of chemical neurotransmission at developing synapses. J Neurosci 24:112–120

    CAS  Article  PubMed  Google Scholar 

  35. Todd KL, Kristan WB Jr, French KA (2010) Gap junction expression is required for normal chemical synapse formation. J Neurosci 30:15277–15285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Westfall IA (1996) Ultrastructure of synapses in the first-evolved nervous systems. J Neurocytol 25:735–746

    CAS  Article  PubMed  Google Scholar 

  37. Yuste R, Nelson DA, Rubin WW, Katz LC (1995) Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14:7–17

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Tomas Ryan and Dr. Valerie B. O’Leary for reading and commenting on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saak V. Ovsepian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ovsepian, S.V. The birth of the synapse. Brain Struct Funct 222, 3369–3374 (2017). https://doi.org/10.1007/s00429-017-1459-2

Download citation

Keywords

  • Synaptic evolution
  • Chemical synapse
  • Exaptation
  • Gap junctions