Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals

Abstract

Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Achard S, Salvador R, Whitcher B et al (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72. doi:10.1523/JNEUROSCI.3874-05.2006

    CAS  Article  PubMed  Google Scholar 

  2. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J (2013) The convergence of maturational change and structural covariance in human cortical networks. J Neurosci 33:2889–2899. doi:10.1523/JNEUROSCI.3554-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Third Int AAAI Conf Weblogs Soc Media. doi:10.1136/qshc.2004.010033

    Google Scholar 

  4. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013. doi:10.1098/rstb.2005.1634

    Article  PubMed  PubMed Central  Google Scholar 

  5. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. doi:10.1002/mrm.1910340409

    CAS  Article  PubMed  Google Scholar 

  6. Biswal BB, Mennes M, Zuo X-N et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739. doi:10.1073/pnas.0911855107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008:P10008. doi:10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi:10.1038/nrn2575

    CAS  Article  PubMed  Google Scholar 

  9. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349. doi:10.1038/nrn3214

    CAS  PubMed  Google Scholar 

  10. Chen ZJ, He Y, Rosa-Neto P et al (2011) Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. Neuroimage 56:235–245. doi:10.1016/j.neuroimage.2011.01.010

    Article  PubMed  Google Scholar 

  11. Clos M, Rottschy C, Laird AR et al (2014) Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. Neuroimage 99:269–280. doi:10.1016/j.neuroimage.2014.05.030

    Article  PubMed  PubMed Central  Google Scholar 

  12. Di X, Biswal BB, Alzheimer’s Disease Neuroimaging Initiative (2012) Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connect 2:275–283. doi:10.1089/brain.2012.0086

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di X, Gohel S, Kim EH, Biswal BB (2013) Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front Hum Neurosci 7:493. doi:10.3389/fnhum.2013.00493

    PubMed  PubMed Central  Google Scholar 

  14. Dosenbach NUF, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361. doi:10.1126/science.1194144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. DuPre E, Spreng RN (2017) Structural covariance networks across the lifespan, from 6 to 94 years of age. bioRxiv. doi:10.1101/090233

  16. Eguíluz VM, Chialvo DR, Cecchi GA et al (2005) Scale-free brain functional networks. Phys Rev Lett 94:18102. doi:10.1103/PhysRevLett.94.018102

    Article  Google Scholar 

  17. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441. doi:10.1093/biostatistics/kxm045

    Article  PubMed  Google Scholar 

  19. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78. doi:10.1002/hbm.460020107

    Article  Google Scholar 

  20. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36. doi:10.1089/brain.2011.0008

    Article  PubMed  Google Scholar 

  21. Friston KJ, Williams S, Howard R et al (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355. doi:10.1002/mrm.1910350312

    CAS  Article  PubMed  Google Scholar 

  22. Gong G, He Y, Concha L et al (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536. doi:10.1093/cercor/bhn102

    Article  PubMed  Google Scholar 

  23. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258. doi:10.1073/pnas.0135058100

    CAS  Article  PubMed  Google Scholar 

  24. Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159. doi:10.1371/journal.pbio.0060159

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hänggi J, Wotruba D, Jäncke L et al (2011) Globally altered structural brain network topology in grapheme-color synesthesia. J Neurosci 31:5816–5828. doi:10.1523/JNEUROSCI.0964-10.2011

    Article  PubMed  Google Scholar 

  26. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419. doi:10.1093/cercor/bhl149

    Article  PubMed  Google Scholar 

  27. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28:4756–4766. doi:10.1523/JNEUROSCI.0141-08.2008

    CAS  Article  PubMed  Google Scholar 

  28. Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19:466–470. doi:10.1016/S1053-8119(03)00112-5

    Article  PubMed  Google Scholar 

  29. Horwitz B, Duara R, Rapoport SI (1984) Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J Cereb Blood Flow Metab 4:484–499. doi:10.1038/jcbfm.1984.73

    CAS  Article  PubMed  Google Scholar 

  30. Lerch JP, Worsley K, Shaw WP et al (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31:993–1003. doi:10.1016/j.neuroimage.2006.01.042

    Article  PubMed  Google Scholar 

  31. Liu Y, Liang M, Zhou Y et al (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961. doi:10.1093/brain/awn018

    Article  PubMed  Google Scholar 

  32. Liu F, Zhuo C, Yu C (2016) Altered cerebral blood flow covariance network in schizophrenia. Front Neurosci. doi:10.3389/fnins.2016.00308

    Google Scholar 

  33. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132. doi:10.1006/nimg.1997.0315

    CAS  Article  PubMed  Google Scholar 

  34. Marcus DS, Wang TH, Parker J et al (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19:1498–1507. doi:10.1162/jocn.2007.19.9.1498

    Article  PubMed  Google Scholar 

  35. Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310. doi:10.1523/JNEUROSCI.0357-05.2005

    CAS  Article  PubMed  Google Scholar 

  36. Metter EJ, Riege WH, Kuhl DE, Phelps ME (1984) Cerebral metabolic relationships for selected brain regions in healthy adults. J Cereb Blood Flow Metab 4:1–7. doi:10.1038/jcbfm.1984.1

    CAS  Article  PubMed  Google Scholar 

  37. Montembeault M, Joubert S, Doyon J et al (2012) The impact of aging on gray matter structural covariance networks. Neuroimage 63:754–759. doi:10.1016/j.neuroimage.2012.06.052

    Article  PubMed  Google Scholar 

  38. Murphy K, Birn RM, Handwerker DA et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905. doi:10.1016/j.neuroimage.2008.09.036

    Article  PubMed  Google Scholar 

  39. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582. doi:10.1073/pnas.0601602103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Qiu X, Zhang Y, Feng H, Jiang D (2016) Positron emission tomography reveals abnormal topological organization in functional brain network in diabetic patients. Front Neurosci. doi:10.3389/fnins.2016.00235

    Google Scholar 

  41. Reid AT, Hoffstaedter F, Gong G et al (2016) A seed-based cross-modal comparison of brain connectivity measures. Brain Struct Funct. doi:10.1007/s00429-016-1264-3

    Google Scholar 

  42. Roberts RP, Hach S, Tippett LJ, Addis DR (2016) The Simpson’s paradox and fMRI: similarities and differences between functional connectivity measures derived from within-subject and across-subject correlations. Neuroimage 135:1–15. doi:10.1016/j.neuroimage.2016.04.028

    Article  PubMed  Google Scholar 

  43. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. doi:10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  44. Salvador R, Suckling J, Coleman MR et al (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342. doi:10.1093/cercor/bhi016

    Article  PubMed  Google Scholar 

  45. Sanabria-Diaz G, Martínez-Montes E, Melie-Garcia L (2013) Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment. PLoS One. doi:10.1371/journal.pone.0068860

    PubMed  PubMed Central  Google Scholar 

  46. Seo EH, Lee DSY, Lee J et al (2013) Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One 8:e53922. doi:10.1371/journal.pone.0053922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Taylor PA, Gohel S, Di X et al (2012) Functional covariance networks: obtaining resting-state networks from intersubject variability. Brain Connect 2:203–217. doi:10.1089/brain.2012.0095

    Article  PubMed  PubMed Central  Google Scholar 

  48. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442. doi:10.1038/30918

    CAS  Article  PubMed  Google Scholar 

  49. Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1189. doi:10.1038/nm.3290

    CAS  Article  PubMed  Google Scholar 

  50. Wu CW, Gu H, Lu H et al (2009) Mapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state. Neuroimage 45:694–701. doi:10.1016/j.neuroimage.2008.12.066

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yeo BTT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165. doi:10.1152/jn.00338.2011

    Article  PubMed  Google Scholar 

  52. Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107:18191–18196. doi:10.1073/pnas.1003109107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B. B. B. and H. F. W. are funded by a joint U. S. National Science Foundation and German Federal Ministry of Education and Research (NSF-BMBF) Grant (NSF Grant Number: R01 DA038895, BMBF Grant Number: DLR-01GQ1415). B. B. B. is also funded by an NIH Grant (R01 AG032088). H. F. W. is also funded by the German Research Foundation (DFG Emmy Noether Program: WE 5795/2-1), the Swiss Werner-Siemens-Foundation, University of Tuebingen (medical faculty, fortune, No: 2209-0-0). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Bharat B. Biswal.

Additional information

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di, X., Gohel, S., Thielcke, A. et al. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals. Brain Struct Funct 222, 3833–3845 (2017). https://doi.org/10.1007/s00429-017-1438-7

Download citation

Keywords

  • Brain network
  • Brain connectivity
  • PET
  • Gray matter volume
  • Resting-state