Brain Structure and Function

, Volume 222, Issue 8, pp 3833–3845 | Cite as

Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals

  • Xin Di
  • Suril Gohel
  • Andre Thielcke
  • Hans F. Wehrl
  • Bharat B. BiswalEmail author
  • The Alzheimer’s Disease Neuroimaging Initiative
Original Article


Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.


Brain network Brain connectivity PET Gray matter volume Resting-state 



B. B. B. and H. F. W. are funded by a joint U. S. National Science Foundation and German Federal Ministry of Education and Research (NSF-BMBF) Grant (NSF Grant Number: R01 DA038895, BMBF Grant Number: DLR-01GQ1415). B. B. B. is also funded by an NIH Grant (R01 AG032088). H. F. W. is also funded by the German Research Foundation (DFG Emmy Noether Program: WE 5795/2-1), the Swiss Werner-Siemens-Foundation, University of Tuebingen (medical faculty, fortune, No: 2209-0-0). Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.


  1. Achard S, Salvador R, Whitcher B et al (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72. doi: 10.1523/JNEUROSCI.3874-05.2006 CrossRefPubMedGoogle Scholar
  2. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J (2013) The convergence of maturational change and structural covariance in human cortical networks. J Neurosci 33:2889–2899. doi: 10.1523/JNEUROSCI.3554-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Third Int AAAI Conf Weblogs Soc Media. doi: 10.1136/qshc.2004.010033 Google Scholar
  4. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013. doi: 10.1098/rstb.2005.1634 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. doi: 10.1002/mrm.1910340409 CrossRefPubMedGoogle Scholar
  6. Biswal BB, Mennes M, Zuo X-N et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739. doi: 10.1073/pnas.0911855107 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008 CrossRefGoogle Scholar
  8. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi: 10.1038/nrn2575 CrossRefPubMedGoogle Scholar
  9. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349. doi: 10.1038/nrn3214 PubMedGoogle Scholar
  10. Chen ZJ, He Y, Rosa-Neto P et al (2011) Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. Neuroimage 56:235–245. doi: 10.1016/j.neuroimage.2011.01.010 CrossRefPubMedGoogle Scholar
  11. Clos M, Rottschy C, Laird AR et al (2014) Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. Neuroimage 99:269–280. doi: 10.1016/j.neuroimage.2014.05.030 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Di X, Biswal BB, Alzheimer’s Disease Neuroimaging Initiative (2012) Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connect 2:275–283. doi: 10.1089/brain.2012.0086 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Di X, Gohel S, Kim EH, Biswal BB (2013) Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front Hum Neurosci 7:493. doi: 10.3389/fnhum.2013.00493 PubMedPubMedCentralGoogle Scholar
  14. Dosenbach NUF, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361. doi: 10.1126/science.1194144 CrossRefPubMedPubMedCentralGoogle Scholar
  15. DuPre E, Spreng RN (2017) Structural covariance networks across the lifespan, from 6 to 94 years of age. bioRxiv. doi: 10.1101/090233
  16. Eguíluz VM, Chialvo DR, Cecchi GA et al (2005) Scale-free brain functional networks. Phys Rev Lett 94:18102. doi: 10.1103/PhysRevLett.94.018102 CrossRefGoogle Scholar
  17. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678CrossRefPubMedPubMedCentralGoogle Scholar
  18. Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441. doi: 10.1093/biostatistics/kxm045 CrossRefPubMedGoogle Scholar
  19. Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78. doi: 10.1002/hbm.460020107 CrossRefGoogle Scholar
  20. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36. doi: 10.1089/brain.2011.0008 CrossRefPubMedGoogle Scholar
  21. Friston KJ, Williams S, Howard R et al (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355. doi: 10.1002/mrm.1910350312 CrossRefPubMedGoogle Scholar
  22. Gong G, He Y, Concha L et al (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536. doi: 10.1093/cercor/bhn102 CrossRefPubMedGoogle Scholar
  23. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258. doi: 10.1073/pnas.0135058100 CrossRefPubMedGoogle Scholar
  24. Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159. doi: 10.1371/journal.pbio.0060159 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hänggi J, Wotruba D, Jäncke L et al (2011) Globally altered structural brain network topology in grapheme-color synesthesia. J Neurosci 31:5816–5828. doi: 10.1523/JNEUROSCI.0964-10.2011 CrossRefPubMedGoogle Scholar
  26. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419. doi: 10.1093/cercor/bhl149 CrossRefPubMedGoogle Scholar
  27. He Y, Chen Z, Evans A (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J Neurosci 28:4756–4766. doi: 10.1523/JNEUROSCI.0141-08.2008 CrossRefPubMedGoogle Scholar
  28. Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19:466–470. doi: 10.1016/S1053-8119(03)00112-5 CrossRefPubMedGoogle Scholar
  29. Horwitz B, Duara R, Rapoport SI (1984) Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J Cereb Blood Flow Metab 4:484–499. doi: 10.1038/jcbfm.1984.73 CrossRefPubMedGoogle Scholar
  30. Lerch JP, Worsley K, Shaw WP et al (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31:993–1003. doi: 10.1016/j.neuroimage.2006.01.042 CrossRefPubMedGoogle Scholar
  31. Liu Y, Liang M, Zhou Y et al (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961. doi: 10.1093/brain/awn018 CrossRefPubMedGoogle Scholar
  32. Liu F, Zhuo C, Yu C (2016) Altered cerebral blood flow covariance network in schizophrenia. Front Neurosci. doi: 10.3389/fnins.2016.00308 Google Scholar
  33. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7:119–132. doi: 10.1006/nimg.1997.0315 CrossRefPubMedGoogle Scholar
  34. Marcus DS, Wang TH, Parker J et al (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19:1498–1507. doi: 10.1162/jocn.2007.19.9.1498 CrossRefPubMedGoogle Scholar
  35. Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310. doi: 10.1523/JNEUROSCI.0357-05.2005 CrossRefPubMedGoogle Scholar
  36. Metter EJ, Riege WH, Kuhl DE, Phelps ME (1984) Cerebral metabolic relationships for selected brain regions in healthy adults. J Cereb Blood Flow Metab 4:1–7. doi: 10.1038/jcbfm.1984.1 CrossRefPubMedGoogle Scholar
  37. Montembeault M, Joubert S, Doyon J et al (2012) The impact of aging on gray matter structural covariance networks. Neuroimage 63:754–759. doi: 10.1016/j.neuroimage.2012.06.052 CrossRefPubMedGoogle Scholar
  38. Murphy K, Birn RM, Handwerker DA et al (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44:893–905. doi: 10.1016/j.neuroimage.2008.09.036 CrossRefPubMedGoogle Scholar
  39. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582. doi: 10.1073/pnas.0601602103 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Qiu X, Zhang Y, Feng H, Jiang D (2016) Positron emission tomography reveals abnormal topological organization in functional brain network in diabetic patients. Front Neurosci. doi: 10.3389/fnins.2016.00235 Google Scholar
  41. Reid AT, Hoffstaedter F, Gong G et al (2016) A seed-based cross-modal comparison of brain connectivity measures. Brain Struct Funct. doi: 10.1007/s00429-016-1264-3 Google Scholar
  42. Roberts RP, Hach S, Tippett LJ, Addis DR (2016) The Simpson’s paradox and fMRI: similarities and differences between functional connectivity measures derived from within-subject and across-subject correlations. Neuroimage 135:1–15. doi: 10.1016/j.neuroimage.2016.04.028 CrossRefPubMedGoogle Scholar
  43. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 CrossRefPubMedGoogle Scholar
  44. Salvador R, Suckling J, Coleman MR et al (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342. doi: 10.1093/cercor/bhi016 CrossRefPubMedGoogle Scholar
  45. Sanabria-Diaz G, Martínez-Montes E, Melie-Garcia L (2013) Glucose metabolism during resting state reveals abnormal brain networks organization in the Alzheimer’s disease and mild cognitive impairment. PLoS One. doi: 10.1371/journal.pone.0068860 PubMedPubMedCentralGoogle Scholar
  46. Seo EH, Lee DSY, Lee J et al (2013) Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One 8:e53922. doi: 10.1371/journal.pone.0053922 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Taylor PA, Gohel S, Di X et al (2012) Functional covariance networks: obtaining resting-state networks from intersubject variability. Brain Connect 2:203–217. doi: 10.1089/brain.2012.0095 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442. doi: 10.1038/30918 CrossRefPubMedGoogle Scholar
  49. Wehrl HF, Hossain M, Lankes K et al (2013) Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med 19:1184–1189. doi: 10.1038/nm.3290 CrossRefPubMedGoogle Scholar
  50. Wu CW, Gu H, Lu H et al (2009) Mapping functional connectivity based on synchronized CMRO2 fluctuations during the resting state. Neuroimage 45:694–701. doi: 10.1016/j.neuroimage.2008.12.066 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Yeo BTT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165. doi: 10.1152/jn.00338.2011 CrossRefPubMedGoogle Scholar
  52. Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107:18191–18196. doi: 10.1073/pnas.1003109107 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xin Di
    • 1
  • Suril Gohel
    • 1
  • Andre Thielcke
    • 2
  • Hans F. Wehrl
    • 2
  • Bharat B. Biswal
    • 1
    Email author
  • The Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkUSA
  2. 2.Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging CenterEberhard Karls University of TuebingenTübingenGermany

Personalised recommendations