Characterization of electrocorticogram high-gamma signal in response to varying upper extremity movement velocity

  • Po T. Wang
  • Colin M. McCrimmon
  • Christine E. King
  • Susan J. Shaw
  • David E. Millett
  • Hui Gong
  • Luis A. Chui
  • Charles Y. Liu
  • Zoran Nenadic
  • An H. Do
Original Article

Abstract

The mechanism by which the human primary motor cortex (M1) encodes upper extremity movement kinematics is not fully understood. For example, human electrocorticogram (ECoG) signals have been shown to modulate with upper extremity movements; however, this relationship has not been explicitly characterized. To address this issue, we recorded high-density ECoG signals from patients undergoing epilepsy surgery evaluation as they performed elementary upper extremity movements while systematically varying movement speed and duration. Specifically, subjects performed intermittent pincer grasp/release, elbow flexion/extension, and shoulder flexion/extension at slow, moderate, and fast speeds. In all movements, bursts of power in the high-\(\gamma \) band (80–160 Hz) were observed in M1. In addition, the amplitude of these power bursts and the area of M1 with elevated high-\(\gamma \) activity were directly proportional to the movement speed. Likewise, the duration of elevated high-\(\gamma \) activity increased with movement duration. Based on linear regression, M1 high-\(\gamma \) power amplitude and duration covaried with movement speed and duration, respectively, with an average \(r^2\) of \(0.75 \pm 0.10\) and \(0.68 \pm 0.21\). These findings indicate that the encoding of upper extremity movement speed by M1 high-\(\gamma \) activity is primarily linear. Also, the fact that this activity remained elevated throughout a movement suggests that M1 does not merely generate transient instructions for a specific movement duration, but instead is responsible for the entirety of the movement. Finally, the spatial distribution of high-\(\gamma \) activity suggests the presence of a recruitment phenomenon in which higher speeds or increased muscle activity involve activation of larger M1 areas.

Keywords

Electrocorticography Motor cortex Kinematic Movement speed Movement duration 

References

  1. Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV (2010) Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand. J Neural Eng 7(4):046002CrossRefPubMedCentralPubMedGoogle Scholar
  2. Anderson NR, Blakely T, Schalk G, Leuthardt EC, Moran DW (2012) Electrocorticographic (ECoG) correlates of human arm movements. Exp Brain Res 223(1):1–10CrossRefPubMedGoogle Scholar
  3. Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44(4):773–791PubMedGoogle Scholar
  4. Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(12):2301–2315CrossRefPubMedGoogle Scholar
  5. Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121(12):2271–2299CrossRefPubMedGoogle Scholar
  6. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38Google Scholar
  7. Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31(1):14–27PubMedGoogle Scholar
  8. Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588CrossRefGoogle Scholar
  9. Fujiwara Y, Matsumoto R, Nakae T, Usami K, Matsuhashi M, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S, Mima T, Ikeda A, Osu R (2016) Neural pattern similarity between contra- and ipsilateral movements in high-frequency band of human electrocorticograms. Neuroimage 147:302–313CrossRefPubMedGoogle Scholar
  10. Hammer J, Pistohl T, Fischer J, Kršek P, Tomášek M, Marusič P, Schulze-Bonhage A, Aertsen A, Ball T (2016) Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb Cortex 26(6):2863–2881CrossRefPubMedCentralPubMedGoogle Scholar
  11. Humphrey DR, Schmidt EM, Thompson WD (1970) Predicting measures of motor performance from multiple cortical spike trains. Science 170(959):758–762CrossRefPubMedGoogle Scholar
  12. Jäncke L, Specht K, Mirzazade S, Peters M (1999) The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage 9(5):497–507CrossRefPubMedGoogle Scholar
  13. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795CrossRefGoogle Scholar
  14. Kubánek J, Miller K, Ojemann J, Wolpaw J, Schalk G (2009) Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng 6(6):066001CrossRefPubMedCentralPubMedGoogle Scholar
  15. Lutz K, Koeneke S, Wüstenberg T, Jäncke L (2004) Asymmetry of cortical activation during maximum and convenient tapping speed. Neurosci Lett 373(1):61–66CrossRefGoogle Scholar
  16. Miller K, Leuthardt E, Schalk G, Rao R, Anderson N, Moran D, Miller J, Ojemann J (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci 27(9):2424–2432CrossRefPubMedGoogle Scholar
  17. Nenadic Z, Burdick J (2006) A control algorithm for autonomous optimization of extracellular recordings. IEEE Trans Biomed Eng 53(5):941–955CrossRefPubMedGoogle Scholar
  18. Person R (1974) Rhythmic activity of a group of human motoneurones during voluntary contraction of a muscle. Electroen Clin Neuro 36:585–595CrossRefGoogle Scholar
  19. Pfurtscheller G, Graimann B, Huggins J, Levine S, Schuh L (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol 114(7):1226–1236CrossRefPubMedGoogle Scholar
  20. Pistohl T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C (2008) Prediction of arm movement trajectories from ECoG-recordings in humans. J Neurosci Methods 167(1):105–114CrossRefPubMedGoogle Scholar
  21. Schalk G, Kubánek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264–275CrossRefPubMedGoogle Scholar
  22. Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A, Miyazaki M et al (1993) Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116(6):1387–1398CrossRefPubMedGoogle Scholar
  23. Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a pet study. J Neurophysiol 80(4):2162–2176PubMedGoogle Scholar
  24. Wang PT, King CE, Do AH, Nenadic Z (2011a) A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Med Eng Phys 33(5):546–552CrossRefPubMedGoogle Scholar
  25. Wang Z, Ji Q, Miller K, Schalk G (2011b) Prior knowledge improves decoding of finger flexion from electrocorticographic signals. Front Neurosci 5:127CrossRefPubMedCentralPubMedGoogle Scholar
  26. Wang PT, King CE, Schombs A, Lin JJ, Sazgar M, Hsu FPK, Millett DE, Liu CY, Chui LA, Nenadic Z, Do AH (2013a) Electrocorticogram encoding of upper extremity movement trajectories. In: Proceedings of the 6th international IEEE EMBS conference on neural engineering, pp 1429–1432Google Scholar
  27. Wang PT, King CE, Schombs A, Lin JJ, Sazgar M, Hsu FPK, Shaw SJ, Millett DE, Liu CY, Chui LA, Nenadic Z, Do AH (2013b) Electrocorticographic gamma band power encodes the velocity of upper extremity movements. In: Proceedings of the 5th international brain–computer interface meeting, p 120Google Scholar
  28. Wang PT, King CE, Shaw SJ, Millett DE, Liu CY, Chui LA, Nenadic Z, Do AH (2013c) A co-registration approach for electrocorticogram electrode localization using post-implantation MRI and CT of the head. In: Proceedings of the 6th international IEEE EMBS conference on neural engineering, pp 525–528Google Scholar
  29. Wang PT, Puttock EJ, King CE, Schombs A, Lin JJ, Sazgar M, Hsu FPK, Shaw SJ, Millett DE, Liu CY, Chui LA, Do AH, Nenadic Z (2013d) State and trajectory decoding of upper extremity movements from electrocorticogram. In: Proceedings of the 6th international IEEE EMBS conference on neural engineering, pp 969–972Google Scholar
  30. Wang PT, King CE, Shaw SJ, Millett DE, Liu CY, Chui LA, Nenadic Z, Do AH (2014) Electrocorticogram encoding of upper extremity movement duration. In: Proceedings of the 36th annual international conference of the IEEE engineering in Medicine and Biology Society, pp 1243–1246Google Scholar
  31. Wang PT, King CE, McCrimmon CM, Lin JJ, Sazgar M, Hsu FP, Shaw SJ, Millet DE, Chui LA, Liu CY, Do AH, Nenadic Z (2016) Comparison of decoding resolution of standard and high-density electrocorticogram electrodes. J Neural Eng 13(2):026016CrossRefPubMedGoogle Scholar
  32. Wang W, Collinger JL, Degenhart AD, Tyler-Kabara EC, Schwartz AB, Moran DW, Weber DJ, Wodlinger B, Vinjamuri RK, Ashmore RC et al (2013e) An electrocorticographic brain interface in an individual with tetraplegia. PloS One 8(2):e55344CrossRefPubMedCentralPubMedGoogle Scholar
  33. Wexler BE, Fulbright RK, Lacadie CM, Skudlarski P, Kelz MB, Constable RT, Gore JC (1997) An fMRI study of the human cortical motor system response to increasing functional demands. Magn Reson Imaging 15(4):385–396CrossRefPubMedGoogle Scholar
  34. Wiestler T, Diedrichsen J (2013) Skill learning strengthens cortical representations of motor sequences. Elife 2(e00):801Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Po T. Wang
    • 1
  • Colin M. McCrimmon
    • 1
  • Christine E. King
    • 1
    • 2
  • Susan J. Shaw
    • 3
    • 4
    • 5
  • David E. Millett
    • 3
    • 5
    • 6
  • Hui Gong
    • 3
    • 5
  • Luis A. Chui
    • 7
  • Charles Y. Liu
    • 5
    • 8
    • 9
  • Zoran Nenadic
    • 1
    • 10
  • An H. Do
    • 7
  1. 1.Department of Biomedical EngineeringUniversity of CaliforniaIrvineUSA
  2. 2.Department of Computer ScienceUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of NeurologyRancho Los Amigos National Rehabilitation CenterDowneyUSA
  4. 4.Department of NeurologyUniversity of Southern CaliforniaLos AngelesUSA
  5. 5.Center for NeuroRestorationUniversity of Southern CaliforniaLos AngelesUSA
  6. 6.Department of NeurologyHoag Memorial Hospital PresbyterianNewport BeachUSA
  7. 7.Department of NeurologyUniversity of CaliforniaIrvineUSA
  8. 8.Department of NeurosurgeryRancho Los Amigos National Rehabilitation CenterDowneyUSA
  9. 9.Department of NeurosurgeryUniversity of Southern CaliforniaLos AngelesUSA
  10. 10.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations