Brain Structure and Function

, Volume 222, Issue 6, pp 2787–2805 | Cite as

Mtss1 promotes maturation and maintenance of cerebellar neurons via splice variant-specific effects

  • Thorsten Sistig
  • Fanziska Lang
  • Sebastian Wrobel
  • Stephan L. Baader
  • Karl Schilling
  • Britta Eiberger
Original Article
  • 217 Downloads

Abstract

Efficient coupling of the actin cytoskeleton to the cell membrane is crucial for histogenesis and maintenance of the nervous system. At this critical interface, BAR (Bin–Amphiphysin–Rvs) proteins regulate membrane bending, shown to be instrumental for mobility and morphogenesis of individual cells. Yet, the systemic significance of these proteins remains largely unexplored. Here, we probe the role of a prominent member of this protein family, the inverse-BAR protein Mtss1, for the development and function of a paradigmatic neuronal circuit, the cerebellar cortex. Mtss1-null mice show granule cell ectopias, dysmorphic Purkinje cells, malformed axons, and a protracted neurodegeneration entailing age-dependent motor deficits. In postmitotic granule cells, which transiently express Mtss1 while they migrate and form neurites, Mtss1 impinges on directional persistence and neuritogenesis. The latter effect can be specifically attributed to its exon 12a splice variant. Targeted re-expression of Mtss1 in Mtss1-null animals indicated that these pathologies were largely due to cell type-specific and intrinsic effects. Together, our results provide a mechanistic perspective on Mtss1 function for brain development and degeneration and relate it to structural features of this protein.

Keywords

Actin cytoskeleton Cell migration Neuritogenesis Neurodegeneration 

Supplementary material

429_2017_1372_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 KB)
429_2017_1372_MOESM2_ESM.jpg (1.1 mb)
Supplementary material 2 (JPG 1122 KB)

References

  1. Altman J, Anderson WJ (1972) Experimental reorganization of the cerebellar cortex. I. Morphological effects of elimination of all microneurons with prolonged x-irradiation started at birth. J Comp Neurol 146:355–405CrossRefPubMedGoogle Scholar
  2. Atwood SX, Li M, Lee A, Tang JY, Oro AE (2013) GLI activation by atypical protein kinase C iota/lambda regulates the growth of basal cell carcinomas. Nature 494:484–488CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baptista CA, Hatten ME, Blazeski R, Mason CA (1994) Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron 12:243–260CrossRefPubMedGoogle Scholar
  4. Barlow CA, Laishram RS, Anderson RA (2010) Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 20:25–35CrossRefPubMedGoogle Scholar
  5. Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28:93–98CrossRefPubMedGoogle Scholar
  6. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordatze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172CrossRefPubMedGoogle Scholar
  7. Bompard G, Sharp SJ, Freiss G, Machesky LM (2005) Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118:5393–5403CrossRefPubMedGoogle Scholar
  8. Burov S, Jeon JH, Metzler R, Barkai E (2011) Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys 13:1800–1812CrossRefPubMedGoogle Scholar
  9. Carlson BR, Lloyd KE, Kruszewski A, Kim IH, Rodriguiz RM, Heindel C, Faytell M, Dudek SM, Wetsel WC, Soderling SH (2011) WRP/srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory. J Neurosci 31:2447–2460CrossRefPubMedPubMedCentralGoogle Scholar
  10. Caviness VS Jr, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326CrossRefPubMedGoogle Scholar
  11. Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de MJ, Jin WL, Vanderhaeghen P, Ghosh A, Sassa T, Polleux F (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149:923–935CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crespo CL, Vernieri C, Keller PJ, Garre M, Bender JR, Wittbrodt J, Pardi R (2014) The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 127:4381–4395CrossRefPubMedPubMedCentralGoogle Scholar
  13. Da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694–704CrossRefPubMedGoogle Scholar
  14. Dawson JC, Bruche S, Spence HJ, Braga VM, Machesky LM (2012a) Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1. PLoS ONE 7:e31141CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dawson JC, Timpson P, Kalna G, Machesky LM (2012b) Mtss1 regulates epidermal growth factor signaling in head and neck squamous carcinoma cells. Oncogene 31:1781–1793CrossRefPubMedGoogle Scholar
  16. Dickinson RB, Tranquillo RT (1993) Optimal estimation of cell movement indices from the statistical analysis of cell tracking data. AIChE J 39:1995–2010.CrossRefGoogle Scholar
  17. Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906CrossRefPubMedGoogle Scholar
  18. Flynn KC (2013) The cytoskeleton and neurite initiation. Bioarchitecture 3:86–109CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gao WQ, Heintz N, Hatten ME (1991) Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6:705–715CrossRefPubMedGoogle Scholar
  20. Glassmann A, Molly S, Surchev L, Nazwar TA, Holst M, Hartmann W, Baader SL, Oberdick J, Pietsch T, Schilling K (2007) Developmental expression and differentiation-related neuron-specific splicing of metastasis suppressor 1 (Mtss1) in normal and transformed cerebellar cells. BMC Dev Biol 7:111CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hayn-Leichsenring G, Liebig C, Miething A, Schulz A, Kumar S, Schwalbe M, Eiberger B, Baader SL (2011) Cellular distribution of metastasis suppressor 1 and the shape of cell bodies are temporarily altered in Engrailed-2 overexpressing cerebellar Purkinje cells. Neuroscience 189:68–78CrossRefPubMedGoogle Scholar
  22. Hendzel MJ (2014) The F-act’s of nuclear actin. Curr Opin Cell Biol 28:84–89CrossRefPubMedGoogle Scholar
  23. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363CrossRefPubMedGoogle Scholar
  24. Johnson MA, Sharma M, Mok MT, Henderson BR (2013) Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress. Biochim Biophys Acta 1833:2334–2347CrossRefPubMedGoogle Scholar
  25. Kim MH, Choi J, Yang J, Chung W, Kim JH, Paik SK, Kim K, Han S, Won H, Bae YS, Cho SH, Seo J, Bae YC, Choi SY, Kim E (2009) Enhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53. J Neurosci 29:1586–1595CrossRefPubMedGoogle Scholar
  26. Kullmann JA, Neumeyer A, Wickertsheim I, Bottcher RT, Costell M, Deitmer JW, Witke W, Friauf E, Rust MB (2012) Purkinje cell loss and motor coordination defects in profilin1 mutant mice. Neuroscience 223:355–364CrossRefPubMedGoogle Scholar
  27. Lee YG, Macoska JA, Korenchuk S, Pienta KJ (2002) MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 4:291–294CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lei R, Tang J, Zhuang X, Deng R, Li G, Yu J, Liang Y, Xiao J, Wang HY, Yang Q, Hu G (2014) Suppression of MIM by microRNA-182 activates RhoA and promotes breast cancer metastasis. Oncogene 33:1287–1296CrossRefPubMedGoogle Scholar
  29. Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerkova G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJ, Hawkes R (2016) Consensus paper: cerebellar development. Cerebellum 15:789–828CrossRefPubMedGoogle Scholar
  30. Luo L, Hensch TK, Ackerman L, Barbel S, Jan LY, Jan YN (1996) Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379:837–840CrossRefPubMedGoogle Scholar
  31. Machold RP, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24CrossRefPubMedGoogle Scholar
  32. Manzano J, Cuadrado M, Morte B, Bernal J (2007) Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells. Endocrinology 148:5746–5751CrossRefPubMedGoogle Scholar
  33. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483CrossRefPubMedGoogle Scholar
  34. Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mattila PK, Salminen M, Yamashiro T, Lappalainen P (2003) Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 278:8452–8459CrossRefPubMedGoogle Scholar
  36. Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176:953–964CrossRefPubMedPubMedCentralGoogle Scholar
  37. McClure C, Cole KL, Wulff P, Klugmann M, Murray AJ (2011) Production and titering of recombinant adeno-associated viral vectors. J Vis Expe 57:e3348Google Scholar
  38. Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W, Nemethova M, Glassmann A, Lappalainen P, Stingl G, Small JV, Fink D, Chin L, Wagner SN (2014) MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 5:3465CrossRefPubMedGoogle Scholar
  39. Metin C, Vallee RB, Rakic P, Bhide PG (2008) Modes and mishaps of neuronal migration in the mammalian brain. J Neurosci 28:11746–11752CrossRefPubMedPubMedCentralGoogle Scholar
  40. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77.CrossRefGoogle Scholar
  41. Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys 82:041914CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mulherkar S, Uddin MD, Couvillon AD, Sillitoe RV, Tolias KF (2014) The small GTPases RhoA and Rac1 regulate cerebellar development by controlling cell morphogenesis, migration and foliation. Dev Biol 394:39–53CrossRefPubMedPubMedCentralGoogle Scholar
  43. Newman AJ, Tremblay A, Nichols ES, Neville HJ, Ullman MT (2011) The influence of language proficiency on lexical semantic processing in native and late learners of english. J Cogn Neurosci 24:1205–1223CrossRefPubMedPubMedCentralGoogle Scholar
  44. Oberdick J, Smeyne RJ, Mann JR, Zackson S, Morgan JI (1990) A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 248:223–226CrossRefPubMedGoogle Scholar
  45. Pan N, Jahan I, Lee JE, Fritzsch B (2009) Defects in the cerebella of conditional Neurod1 null mice correlate with effective Tg(Atoh1-cre) recombination and granule cell requirements for Neurod1 for differentiation. Cell Tissue Res 337:407–428CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  47. R Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing ISBN 3-900051-07-0; http://www.R-project.org/.
  48. Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176CrossRefPubMedGoogle Scholar
  49. Ruthardt N, Lamb DC, Brauchle C (2011) Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol Ther 19:1199–1211CrossRefPubMedPubMedCentralGoogle Scholar
  50. Saarikangas J, Mattila PK, Varjosalo M, Bovellan M, Hakanen J, Calzada-Wack J, Tost M, Jennen L, Rathkolb B, Hans W, Horsch M, Hyvonen ME, Perala N, Fuchs H, Gailus-Durner V, Esposito I, Wolf E, De Angelis MH, Frilander MJ, Savilahti H, Sariola H, Sainio K, Lehtonen S, Taipale J, Salminen M, Lappalainen P (2011) Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. J Cell Sci 124:1245–1255CrossRefPubMedGoogle Scholar
  51. Saarikangas J, Kourdougli N, Senju Y, Chazal G, Segerstrale M, Minkeviciene R, Kuurne J, Mattila PK, Garrett L, Holter SM, Becker L, Racz I, Hans W, Klopstock T, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de AM, von OL, Taira T, Lappalainen P, Rivera C, Hotulainen P (2015) MIM-induced membrane bending promotes dendritic spine initiation. Dev Cell 33:644–659CrossRefPubMedGoogle Scholar
  52. Sawallisch C, Berhorster K, Disanza A, Mantoani S, Kintscher M, Stoenica L, Dityatev A, Sieber S, Kindler S, Morellini F, Schweizer M, Boeckers TM, Korte M, Scita G, Kreienkamp HJ (2009) The insulin receptor substrate of 53 kDa (IRSp53) limits hippocampal synaptic plasticity. J Biol Chem 284:9225–9236CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schilling K, Dickinson MH, Connor JA, Morgan JI (1991a) Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron 7:891–902CrossRefPubMedGoogle Scholar
  54. Schilling K, Luk D, Curran T, Morgan JI (1991b) Regulation of a fos-lacZ fusion gene: a paradigm for quantitative analysis of stimulus-transcription coupling. Proc Natl Acad Sci USA 88:5665–5669CrossRefPubMedPubMedCentralGoogle Scholar
  55. Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME (2004) Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci 7:1195–1203CrossRefPubMedGoogle Scholar
  56. Sotelo C, Rossi F (2013) Purkinje cell migration and differentiation. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders. Springer, New York, pp 147–178CrossRefGoogle Scholar
  57. Suetsugu S (2010) The proposed functions of membrane curvatures mediated by the BAR domain superfamily proteins. J Biochem 148:1–12CrossRefPubMedGoogle Scholar
  58. Suetsugu S, Murayama K, Sakamoto A, Hanawa-Suetsugu K, Seto A, Oikawa T, Mishima C, Shirouzu M, Takenawa T, Yokoyama S (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281:35347–35358CrossRefPubMedGoogle Scholar
  59. Suetsugu S, Kurisu S, Takenawa T (2014) Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 94:1219–1248CrossRefPubMedGoogle Scholar
  60. Tabata T, Sawada S, Araki K, Bono Y, Furuya S, Kano M (2000) A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. J Neurosci Methods 104:45–53CrossRefPubMedGoogle Scholar
  61. Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek-Grashoff A, Brakebusch C, Bradke F (2010) Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30:6930–6943CrossRefPubMedGoogle Scholar
  62. Tarnok K, Czirok A, Czondor K, Schlett K (2005) Cerebellar granule cells show age-dependent migratory differences in vitro. J Neurobiol 65:135–145CrossRefPubMedGoogle Scholar
  63. Treisman R (2013) Shedding light on nuclear actin dynamics and function. Trends Biochem Sci 38:376–377CrossRefPubMedGoogle Scholar
  64. Trenkner E, Smith D, Segil N (1984) Is cerebellar granule cell migration regulated by an internal clock? J Neurosci 4:2850–2855PubMedGoogle Scholar
  65. Van Dine SE, Siu NY, Toia A, Cuoco JA, Betz AJ, Bolivar VJ, Torres G, Ramos RL (2015) Spontaneous malformations of the cerebellar vermis: Prevalence, inheritance, and relationship to lobule/fissure organization in the C57BL/6 lineage. Neuroscience 310:242–251CrossRefPubMedGoogle Scholar
  66. Vilz TO, Moepps B, Engele J, Molly S, Littman DR, Schilling K (2005) The SDF-1/CXCR4 pathway and the development of the cerebellar system. Eur J Neurosci 22:1831–1839CrossRefPubMedGoogle Scholar
  67. Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73:400–409CrossRefPubMedGoogle Scholar
  68. Xia S, Li X, Johnson T, Seidel C, Wallace DP, Li R (2010) Polycystin-dependent fluid flow sensing targets histone deacetylase 5 to prevent the development of renal cysts. Development 137:1075–1084.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhan T, Cao C, Li L, Gu N, Civin CI, Zhan X (2016) MIM regulates the trafficking of bone marrow cells via modulating surface expression of CXCR4. Leukemia 30:1327–1334CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Thorsten Sistig
    • 1
  • Fanziska Lang
    • 1
  • Sebastian Wrobel
    • 1
  • Stephan L. Baader
    • 1
  • Karl Schilling
    • 1
  • Britta Eiberger
    • 1
  1. 1.Anatomisches Institut, Anatomie and ZellbiologieUniversity of BonnBonnGermany

Personalised recommendations