Alyan S, McNaughton BL (1999) Hippocampectomized rats are capable of homing by path integration. Behav Neurosci 113:19–31
CAS
Article
PubMed
Google Scholar
Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84:2113–2132
CAS
PubMed
Google Scholar
Benhamou S (1997) Path integration by swimming rats. Anim Behav 54:321–327
CAS
Article
PubMed
Google Scholar
Blair HT, Welday AC, Zhang K (2007) Scale-invariant memory representations emerge from moiré interference between grid fields that produce theta oscillations: a computational model. J Neurosci 27:3211–3229
CAS
Article
PubMed
Google Scholar
Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599. doi:10.1126/science.1201652
CAS
Article
PubMed
PubMed Central
Google Scholar
Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser MB (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 12:1200–1212. doi:10.1002/hipo.20504
Article
Google Scholar
Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5:e1000291. doi:10.1371/journal.pcbi.1000291
Article
PubMed
PubMed Central
Google Scholar
Burgess N, Barry C, O’Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17:801–812
Article
PubMed
PubMed Central
Google Scholar
Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340
Article
PubMed
Google Scholar
Chen X, He Q, Kelly JW, Fiete IR, McNamara TP (2015) Bias in human path integration is predicted by properties of grid cells. Curr Biol 25:1771–1776
CAS
Article
PubMed
Google Scholar
Chrobak JJ, Stackman RW, Walsh TJ. 1989. Intraseptal administration of muscimol produces dose-dependent memory impairments in the rat. Behav Neural Biol 52:357–369.
CAS
Article
PubMed
Google Scholar
Deshmukh SS, Knierim JJ (2011) Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front Behav Neurosci 5:69. doi:10.3389/fnbeh.2011.00069
Article
PubMed
PubMed Central
Google Scholar
Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192
Article
PubMed
Google Scholar
Etienne AS, Maurer R, Séguinot V (1996) Path integration in mammals and its interaction with visual landmarks. J Exp Biol 199:201–209
CAS
PubMed
Google Scholar
Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19. doi:10.1016/j.neuron.2009.11.031
CAS
Article
PubMed
PubMed Central
Google Scholar
Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26:4266–4276
CAS
Article
PubMed
Google Scholar
Gaussier P, Banquet JP, Sargolini F, Giovannangeli C, Save E, Poucet B (2007) A model of grid cells involving extra hippocampal path integration, and the hippocampal loop. J Integr Neurosci 6:447–476
CAS
Article
PubMed
Google Scholar
Giocomo LM, Zilli EA, Fransén E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722
CAS
Article
PubMed
PubMed Central
Google Scholar
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806. doi:10.1038/nature03721
CAS
Article
PubMed
Google Scholar
Hafting T, Fhyn M, Bonnevie T, Moser MB, Moser EI (2008) Hippocampus-independent phase precession in entorhinal grid cells. Nature 453:1248–1252. doi:10.1038/nature06957
CAS
Article
PubMed
Google Scholar
Hok V, Chah E, Save E, Poucet B (2013) Prefrontal cortex focally modulates hippocampal place cell firing patterns. J Neurosci 33:3443–3451. doi:10.1523/JNEUROSCI.3427-12.2013
CAS
Article
PubMed
Google Scholar
Howard LR, Javadi AH, Yu Y, Mill RD, Morrison LC, Knight R, Loftus MM, Staskute L, Spiers HJ (2014) The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr Biol 24:13331–13340. doi:10.1016/j.cub.2014.05.001
Article
Google Scholar
Insausti R, Herrero MT, Witter MP (1997) Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7:146–183. doi:10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO;2-L
CAS
Article
PubMed
Google Scholar
Jacob PY, Poucet B, Liberge M, Save E, Sargolini F (2014) Vestibular control of entorhinal cortex activity. Front Integr Neurosci 8:38. doi:10.3389/fnint.2014.00038
Article
PubMed
PubMed Central
Google Scholar
King C, Recce M, O’Keefe J (1998) The rhythmicity of cells of the medial septum/diagonal band of Broca in the awake freely moving rat: relationships with behaviour and hippocampal theta. Eur J Neurosci 10:464–477
CAS
Article
PubMed
Google Scholar
Knierim JJ, Neunuebel JP, Deshmukh SS. 2014. Functional correlates of lateral and medial entorhinal cortex: objects, path integration and local-global reference frames. Phil Trans Roy Soc B 369:20130369. doi:10.1098/rstb.2013.0369
Article
Google Scholar
Koenig J, Linder AN, Leutgeb JK, Leutgeb S (2011) The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332:592–595. doi:10.1126/science.1201685
CAS
Article
PubMed
Google Scholar
Kramis R, Vanderwolf CH, Bland BH (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp Neurol 49:58–85
CAS
Article
PubMed
Google Scholar
Kraus BJ, Brandon MP, Robinson RJ, Connerney MA, Hasselmo ME, Eichenbaum H (2015) During running in place, grid cells integrate elapsed time and distance run. Neuron 88:578–589. doi:10.1016/j.neuron.2015.09.031
CAS
Article
PubMed
PubMed Central
Google Scholar
Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523:419–424. doi:10.1038/nature14622
CAS
Article
PubMed
Google Scholar
Langston RF, Wood ER (2010) Associative recognition and the hippocampus: differential effects of hippocampal lesions on object-place, object-context and object-place-context memory. Hippocampus 20:1139–1153. doi:10.1002/hipo.20714
Article
PubMed
Google Scholar
Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S, Cassel JC (2011) Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of GABAergic and cholinergic neurons. Hippocampus 21:1277–1289. doi:10.1002/hipo.20837
CAS
Article
PubMed
Google Scholar
Ma J, Shen B, Stewart LS, Herrick IA, Leung LS (2002) The septohippocampal system participates in general anesthesia. J Neurosci 22:RC200
PubMed
Google Scholar
Maaswinkel H, Jarrad LE, Whishaw IQ (1999) Hippocampectomized rats are impaired in homing by path integration. Hippocampus 9:553–561
CAS
Article
PubMed
Google Scholar
Martin MM, Horn KL, Kusman KJ, Wallace DG (2007) Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning. Physiol Behav 90:412–424
CAS
Article
PubMed
Google Scholar
McDonald JH (2014) Handbook of biological statistics. Sparky House Publishing, Baltimore
Google Scholar
McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678
CAS
Article
PubMed
Google Scholar
Mitchell SJ, Rawlins JNP, Steward O, Olton DS (1982) Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 2:292–302
CAS
PubMed
Google Scholar
Mittlestaedt H, Mittlestaedt ML (1982) Homing by path integration. In: Papi F, Wallraff HG (eds). Avian navigation. Springer, Berlin, pp 290–297
Chapter
Google Scholar
Mizumori SJY, Perez GM, Alvarado MC, Barnes CA, McNaughton BL (1990) Reversible inactivation of the medial septumdifferentially affect two forms of learning in rats. Brain Res 528:12–20
CAS
Article
PubMed
Google Scholar
Moser EI, Moser MB (2008) A metric for space. Hippocampus 18:1142–1156. doi:10.1002/hipo.20483
Article
PubMed
Google Scholar
Navratilova Z, Giocomo LM, Fellous JM, Hasselmo ME, McNaughton BL (2012) Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus 22:772–789. doi:10.1002/hipo.20939
Article
PubMed
Google Scholar
Parron C, Save E (2004) Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp Brain Res 159:349–359
Article
PubMed
Google Scholar
Paxinos G, Watson C. 2004. The rat brain in stereotaxic coordinates. Academic Press, New York
Google Scholar
Rawlins JNP, Feldon J, Gray JA (1979) Septohippocampal connections and the hippocampal theta rhythm. Exp Brain Res 37:49–63
CAS
Article
PubMed
Google Scholar
Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762
CAS
Article
PubMed
Google Scholar
Save E, Guazzelli A, Poucet B (2001) Dissociation of the effects of bilateral lesions of the dorsal hippocampus and parietal cortex on path integration in the rat. Behav Neurosci 115:1212–1223
CAS
Article
PubMed
Google Scholar
Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18:1270–1282. doi:10.1002/hipo.20511
Article
PubMed
PubMed Central
Google Scholar
Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868. doi:10.1126/science.1166466
CAS
Article
PubMed
Google Scholar
Steffenach HA, Witter M, Moser MB, Moser EI (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45:301–313
CAS
Article
PubMed
Google Scholar
Tsao A, Moser MB, Moser EI (2013) Traces of experience in the lateral entorhinal cortex. Curr Biol 23:399–405
CAS
Article
PubMed
Google Scholar
Van Cauter T, Camon J, Alvernhe A, Elduayen C, Sargolini F, Save E (2013) Distinct roles of medial and lateral entorhinal cortex in spatial cognition. Cereb Cortex 23:451–459. doi:10.1093/cercor/bhs033
Article
PubMed
Google Scholar
Wallace DG, Whishaw IQ (2003) NMDA lesions of Ammon’s horn and the dentate gyrus disrupt the direct and temporally paced homing displayed by rats exploring a novel environment: evidence for a role of the hippocampus in dead reckoning. Eur J Neurosci 18:513–523
Article
PubMed
Google Scholar
Whishaw IQ, Tomie JA (1997) Piloting and dead reckoning dissociated by fimbria—fornix lesions in a rat food carrying task. Behav Brain Res 89:87–97
CAS
Article
PubMed
Google Scholar
Whishaw IQ, Hines DJ, Wallace DG (2001) Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning in light (allothetic) and dark (idiothetic) tests. Behav Brain Res 127:49–69
CAS
Article
PubMed
Google Scholar
Winter SS, Köppen JR, Ebert TB, Wallace DG (2013) Limbic system structures differentially contribute to exploratory trip organization of the rat. Hippocampus 23:139–152. doi:10.1002/hipo.22075
Article
PubMed
Google Scholar
Winter SS, Mehlman ML, Clark BJ, Taube JS (2015) Passive transport disrupts grid signals in the parahippocampal cortex. Curr Biol 25:2493–2502. doi:10.1016/j.cub.2015.08.034
CAS
Article
PubMed
PubMed Central
Google Scholar