Skip to main content
Log in

Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alaynick WA, Jessell TM, Pfaff SL (2011) SnapShot: spinal cord development. Cell 146(178–178):e1

    Google Scholar 

  • Allain AE, Baïri A, Meyrand P, Branchereau P (2004) Ontogenic changes of the GABAergic system in the embryonic mouse spinal cord. Brain Res 1000:134–147

    Article  CAS  PubMed  Google Scholar 

  • Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. J Comp Neurol 12:177–192

    Article  Google Scholar 

  • Antal M, Berki AC, Horváth L, O’Donovan MJ (1994) Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord. J Comp Neurol 343:228–236

    Article  CAS  PubMed  Google Scholar 

  • Behar T, Ma W, Hudson L, Barker JL (1994) Analysis of the anatomical distribution of GAD67 mRNA encoding truncated glutamic acid decarboxylase proteins in the embryonic rat brain. Brain Res Dev Brain Res 77:77–87

    Article  CAS  PubMed  Google Scholar 

  • Berki AC, O’Donovan MJ, Antal M (1995) Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord. J Comp Neurol 362:583–596

    Article  CAS  PubMed  Google Scholar 

  • Borromeo MD, Meredith DM, Castro DS, Chang JJ, Tung KC, Guillemot F, Johnson JE (2014) A transcription factor network specifying inhibitory versus excitatory neuron sin the dorsal spinal cord. Development 141:2803–2812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspary T, Anderson KV (2003) Patterning cell types in the dorsal spinal cord: what the mouse mutants say. Nat Rev Neurosci 4:289–297

    Article  PubMed  Google Scholar 

  • Cheng L, Arata A, Mizuguchi R, Qian Y, Karunaratne A, Gray PA, Arata S, Shirasawa S, Bouchard M, Luo P, Chen CL, Busslinger M, Goulding M, Onimaru H, Ma Q (2004) Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates. Nat Neurosci 7:510–517

    Article  CAS  PubMed  Google Scholar 

  • De Marchis S, Temoney S, Erdelyi F, Bovetti S, Bovolin P, Szabo G, Puche AC (2004) GABAergic phenotypic differentiation of a subpopulation of subventricular derived migrating progenitors. Eur J Neurosci 20:1307–1317

    Article  PubMed  Google Scholar 

  • Dressler GR, Douglass EC (1992) Pax2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 89:1179–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16:215–226

    Article  CAS  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  CAS  PubMed  Google Scholar 

  • Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J Comp Neurol 331:339–362

    Article  CAS  PubMed  Google Scholar 

  • Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14:1834–1855

    CAS  PubMed  Google Scholar 

  • Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, Johanssen H, Hösli L, Haenraets K, Ghanem A, Conzelmann KK, Bösl M, Zeilhofer HU (2015) Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85:1289–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao BX, Stricker C, Ziskind-Conhaim L (2001) Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks. J Neurophysiol 86:492–502

    CAS  PubMed  Google Scholar 

  • Goulding M, Lanuza G, Sapir T, Narayan S (2002) The formation of sensorimotor circuits. Curr Opin Neurobiol 12:508–515

    Article  CAS  PubMed  Google Scholar 

  • Gross MK, Dottori M, Goulding M (2002) Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron 34:535–549

    Article  CAS  PubMed  Google Scholar 

  • Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13:42–49

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Feng F, Tamamaki N, Yanagawa Y, Obata K, Li Y-Q, Wu S-X (2007) Prenatal and postnatal development of GABAergic neurons in the spinal cord revealed by green fluorescence protein expression in the GAD67-GFP knock-in mouse. Neuroembryol Aging 4:147–154

    Article  Google Scholar 

  • Hughes DI, Mackie M, Nagy GG, Riddell JS, Maxwell DJ, Szabó G, Erdélyi F, Veress G, Szucs P, Antal M, Todd AJ (2005) P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn. Proc Natl Acad Sci USA 102:9038–9043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenaga T, Urban JM, Gebhart N, Hatta K, Kawakami K, Ono F (2011) Formation of the spinal network in zebrafish determined by domain-specific pax genes. J Comp Neurol 519:1562–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  • Jessell TM, Sürmeli G, Kelly JS (2011) Motor neurons and the sense of place. Neuron 72:419–424

    Article  CAS  PubMed  Google Scholar 

  • Kaufman DL, McGinnis JF, Krieger NR, Tobin AJ (1986) Brain glutamate decarboxylase cloned in lambda gt:11 fusion protein produces gamma-aminobutyric acid. Science 232:1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, Johnson JE (2011) Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol 519:1355–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka Y, Kin H, Tatetsu M, Uema I, Takayama C (2012) Distinct development of GABA system int he ventral and dorsal horns int he embryonic mouse spinal cord. Brain Res 1486:39–52

    Article  CAS  PubMed  Google Scholar 

  • Lawson SJ, Davies HJ, Bennett JP, Lowrie MB (1997) Evidence that spinal interneurons undergo programmed cell death postnatally in the rat. Eur J Neurosci 9:794–799

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnar Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14:1122–1133

    Article  PubMed  Google Scholar 

  • Ma W, Behar T, Barker JL (1992) Transient expression of GABA immunoreactivity in the developing rat spinal cord. J Comp Neurol 325:271–290

    Article  CAS  PubMed  Google Scholar 

  • Mackie M, Hughes DI, Maxwell DJ, Tillakaratne NJ, Todd AJ (2003) Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord. Neuroscience 119:461–472

    Article  CAS  PubMed  Google Scholar 

  • Martin DL, Liu H, Martin SB, Wu SJ (2000) Structural features and regulatory properties of the brain glutamate decarboxylases. Neurochem Int 37:111–119

    Article  CAS  PubMed  Google Scholar 

  • Mckay SE, Oppenheim RW (1991) Lack of evidence for cell death among avian spinal cord interneurons during normal development and following removal of targets and afferents. J Neurobiol 22:721–733

    Article  CAS  PubMed  Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanism: a new theory. Science 150:971–979

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi R, Kriks S, Cordes R, Gossler A, Ma Q, Goulding M (2006) Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons. Nat Neurosci 9:770–778

    Article  CAS  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  • Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23

    Article  CAS  PubMed  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    CAS  PubMed  Google Scholar 

  • Ozaki S, Snider WD (1997) Initial trajectories of sensory axons toward laminar targets in the developing mouse spinal cord. J Comp Neurol 380:215–229

    Article  CAS  PubMed  Google Scholar 

  • Sengul G, Watson C, Tanaka I, Paxinos G (2013) Atlas of the spinal cord of the rat, mouse, marmoset, rhesus, and human. Elsevier, Amsterdam

    Google Scholar 

  • Sharma K, Korade Z, Frank E (1994) Development of specific muscle and cutaneous sensory projection sin cultured segments of spinal cord. Development 120:1315–1323

    CAS  PubMed  Google Scholar 

  • Siembab VC, Smith CA, Zagoraiou L, Berrocal MC, Mentis GZ, Alvarez FJ (2010) Target selection of proprioceptive and motor axon synapses on neonatal V1-derived Ia inhibitory interneurons and Renshaw cells. J Comp Neurol 518:4675–4701

    Article  PubMed  PubMed Central  Google Scholar 

  • Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    Article  CAS  PubMed  Google Scholar 

  • Somogyi R, Wen X, Ma W, Baerker JL (1995) Developmental kinetics of GAD family mRNAs parallel neurogenesis int he rat spinal cord. J Neurosci 15:2575–2591

    CAS  PubMed  Google Scholar 

  • Tran TS, Phelps PE (2000) Axons crossing in the ventral commissure express L1 and GAD65 in the developing rat spinal cord. Dev Neurosci 22:228–236

    Article  CAS  PubMed  Google Scholar 

  • Tran TS, Alijani A, Phelps PE (2003) Unique developmental patterns of GABAergic neurons in rat spinal cord. J Comp Neurol 456:112–226

    Article  PubMed  Google Scholar 

  • Wildner H, Das Gupta R, Bröhl D, Heppenstall PA, Zeihofer HU, Birchmeier C (2013) Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J Neurosci 33:7299–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Academy of Sciences (MTA-TKI 242; M.A.), Hungarian Brain Research Program (KTIA_NAP_13-1-2013-0001; M.A., Z.M.), and Hungarian National Research Fund (OTKA PD 108467; Z.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Antal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Care and Protection Committee at the University of Debrecen and were in accordance with the European Community Council Directives.

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balázs, A., Mészár, Z., Hegedűs, K. et al. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn. Brain Struct Funct 222, 2157–2171 (2017). https://doi.org/10.1007/s00429-016-1331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1331-9

Keywords

Navigation