Brain Structure and Function

, Volume 222, Issue 4, pp 1929–1944 | Cite as

Regional cerebellar volumetric correlates of manual motor and cognitive function

  • Vincent Koppelmans
  • Yoo Young Hoogendam
  • Sarah Hirsiger
  • Susan Mérillat
  • Lutz Jäncke
  • Rachael D. SeidlerEmail author
Original Article


Cerebellar volume declines with aging. Few studies have investigated age differences in regional cerebellar volume (RCV) and their association with motor and cognitive function. In 213 healthy older adults, we investigated the association of age with motor skills, cognition and RCV. Subsequently, we studied the association of RCV with motor skills and cognition. RCVs were derived from T1-weighted MRI scans using the automated SUIT segmentation method and clustered using principal component analysis (PCA). Motor skill (manual dexterity, tapping speed, bimanual visuomotor coordination, grip force) and cognition (mental rotation, verbal memory, inhibition, mental flexibility) were assessed. Behavioral measures were clustered into compounds using PCA: left hand motor skill, right hand motor skill, verbal memory and mental flexibility, and mental rotation & inhibition. Volume of the rostral middle frontal gyri (rMFG) and premotor areas (PMA) were related to performance for reference. Analyses were adjusted for age, sex, and education. Volume of the cerebellar anterior lobe and top of the superior posterior lobe were positively associated with motor skill. Volume of the bottom part of the posterior superior lobe and the inferior posterior lobe was positively associated with cognition. PMA volume was associated with cognition and motor skill and rMFG volume with motor skill. Although these results did not survive FDR correction, their effect sizes suggest that regional cerebellar volume selectively contributes to cognitive and motor skill. Effect sizes of cerebellar associations with performance were similar to those of rMFG/PMA and performance suggesting parallel contributions to performance.


Cerebellum Regional volume Aging MRI Cognition Motor skill 



VK was supported by a grant from the National Space Biomedical Research Institute (PF04101). YYH would like to thank the Stichting Fonds Dr. Catharine van Tussenbroek for their financial support. SM, SH and LJ are supported by the Velux-Stiftung (Project No. 369). This work was further supported by the University Research Priority Program (URPP) “Dynamics of Healthy Aging” of the University of Zurich. RS and LJ are members of the LIFE Course: Evolutionary and Ontogenetic Dynamics.

Compliance with ethical standards

Conflict of interest

All authors declare that the here-described research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

429_2016_1317_MOESM1_ESM.csv (5 kb)
Supplementary material 1 (CSV 5 kb)
429_2016_1317_MOESM2_ESM.csv (256 kb)
Supplementary material 2 (CSV 255 kb)


  1. Allen MD, Owens TE, Fong AK, Richards DR (2011) A functional neuroimaging analysis of the Trail Making Test-B: implications for clinical application. Behav Neurol 24(2):159–171. doi: 10.3233/BEN-2011-0278 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466(3):356–365PubMedCrossRefGoogle Scholar
  3. Ashburner J (2012) SPM: a history. Neuroimage 62(2):791–800. doi: 10.1016/j.neuroimage.2011.10.025 PubMedCrossRefGoogle Scholar
  4. Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC (2010) The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3):2457–2466. doi: 10.1016/j.neuroimage.2009.09.062 PubMedCrossRefGoogle Scholar
  5. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044. doi: 10.1016/j.neuroimage.2010.09.025 PubMedCrossRefGoogle Scholar
  6. Ball G, Stokes PR, Rhodes RA, Bose SK, Rezek I, Wink AM, Lord LD, Mehta MA, Grasby PM, Turkheimer FE (2011) Executive functions and prefrontal cortex: a matter of persistence? Front Syst Neurosci 5:3. doi: 10.3389/fnsys.2011.00003 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ben-Yehudah G, Guediche S, Fiez JA (2007) Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum 6(3):193–201. doi: 10.1080/14734220701286195 PubMedCrossRefGoogle Scholar
  8. Bernard JA, Seidler RD (2013) Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults. Cerebellum 12(5):721–737. doi: 10.1007/s12311-013-0481-z PubMedCrossRefGoogle Scholar
  9. Bernard JA, Seidler RD (2014) Moving forward: age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev 42C:193–207. doi: 10.1016/j.neubiorev.2014.02.011 CrossRefGoogle Scholar
  10. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, Jaeggi SM, Buschkuehl M, Monk CS, Jonides J, Peltier SJ (2012) Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat 6:31. doi: 10.3389/fnana.2012.00031 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bernard JA, Leopold DR, Calhoun VD, Mittal VA (2015) Regional cerebellar volume and cognitive function from adolescence to late middle age. Hum Brain Mapp 36(3):1102–1120. doi: 10.1002/hbm.22690 PubMedCrossRefGoogle Scholar
  12. Brown SH, Kessler KR, Hefter H, Cooke JD, Freund HJ (1993) Role of the cerebellum in visuomotor coordination. I. Delayed eye and arm initiation in patients with mild cerebellar ataxia. Exp Brain Res 94(3):478–488PubMedCrossRefGoogle Scholar
  13. Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80(3):807–815. doi: 10.1016/j.neuron.2013.10.044 PubMedCrossRefGoogle Scholar
  14. Burgess PW, Scott SK, Frith CD (2003) The role of the rostral frontal cortex (area 10) in prospective memory: a lateral versus medial dissociation. Neuropsychologia 41(8):906–918PubMedCrossRefGoogle Scholar
  15. Bushara KO, Wheat JM, Khan A, Mock BJ, Turski PA, Sorenson J, Brooks BR (2001) Multiple tactile maps in the human cerebellum. NeuroReport 12(11):2483–2486PubMedCrossRefGoogle Scholar
  16. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1):39–46. doi: 10.1016/j.neuroimage.2009.01.045 PubMedCrossRefGoogle Scholar
  17. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355PubMedCrossRefGoogle Scholar
  18. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14(1):11–22PubMedCrossRefGoogle Scholar
  19. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009) One-year brain atrophy evident in healthy aging. J Neurosci 29(48):15223–15231. doi: 10.1523/JNEUROSCI.3252-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Haarmeier T, Thier P (2007) The attentive cerebellum—myth or reality? Cerebellum 6(3):177–183. doi: 10.1080/14734220701286187 PubMedCrossRefGoogle Scholar
  21. Halsband U, Ito N, Tanji J, Freund HJ (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116(Pt 1):243–266PubMedCrossRefGoogle Scholar
  22. Harada CN, Natelson Love MC, Triebel KL (2013) Normal cognitive aging. Clin Geriatr Med 29(4):737–752. doi: 10.1016/j.cger.2013.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hartzell JF, Davis B, Melcher D, Miceli G, Jovicich J, Nath T, Singh NC, Hasson U (2016) Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. Neuroimage 131:181–192. doi: 10.1016/j.neuroimage.2015.07.027 PubMedCrossRefGoogle Scholar
  24. Helmstaedter CDH (1990) VLMT: verbaler Lern- und Merkfähigkeitstest: Ein praktikables und differenziertes Instrumentarium zur Prüfung der verbalen Gedächtnisleistungen. Schweizer Arch für Neurol und Psychiatr 141:21–30Google Scholar
  25. Helmstaedter C, Lendt M, Lux S (2001) Verbaler Lern- und Merkfähigkeitstest. Beltz Test GmbH, Göttingen, GermanyGoogle Scholar
  26. Hoffstaedter F, Grefkes C, Roski C, Caspers S, Zilles K, Eickhoff SB (2015) Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Struct Funct 220(2):999–1012. doi: 10.1007/s00429-013-0696-2 PubMedCrossRefGoogle Scholar
  27. Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, Krestin GP, Hofman A, Vernooij MW, Breteler MM, Ikram MA (2012) Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging 33(12):2774–2781. doi: 10.1016/j.neurobiolaging.2012.02.012 PubMedCrossRefGoogle Scholar
  28. Hoogendam YY, Hofman A, van der Geest JN, van der Lugt A, Ikram MA (2014a) Patterns of cognitive function in aging: the Rotterdam Study. Eur J Epidemiol 29(2):133–140. doi: 10.1007/s10654-014-9885-4 PubMedCrossRefGoogle Scholar
  29. Hoogendam YY, van der Geest JN, Niessen WJ, van der Lugt A, Hofman A, Vernooij MW, Ikram MA (2014b) The role of cerebellar volume in cognition in the general elderly population. Alzheimer Dis Assoc Disord. doi: 10.1097/WAD.0000000000000024 PubMedGoogle Scholar
  30. Horn W (1983) Leistungsprüfsystem, 2nd edn. Hogrefe, GöttingenGoogle Scholar
  31. Hulst T, van der Geest JN, Thurling M, Goericke S, Frens MA, Timmann D, Donchin O (2015) Ageing shows a pattern of cerebellar degeneration analogous, but not equal, to that in patients suffering from cerebellar degenerative disease. Neuroimage 116:196–206. doi: 10.1016/j.neuroimage.2015.03.084 PubMedCrossRefGoogle Scholar
  32. Iverson GL (2010) Go/No-Go Testing. In: Kreutzer J, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology, vol 1. Springer, New York, pp 1162–1163Google Scholar
  33. Jancke L, Merillat S, Liem F, Hanggi J (2015) Brain size, sex, and the aging brain. Hum Brain Mapp 36(1):150–169. doi: 10.1002/hbm.22619 PubMedCrossRefGoogle Scholar
  34. Jansen P, Heil M (2010) Gender differences in mental rotation across adulthood. Exp Aging Res 36(1):94–104. doi: 10.1080/03610730903422762 PubMedCrossRefGoogle Scholar
  35. Japee S, Holiday K, Satyshur MD, Mukai I, Ungerleider LG (2015) A role of right middle frontal gyrus in reorienting of attention: a case study. Front Syst Neurosci 9:23. doi: 10.3389/fnsys.2015.00023 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, Hesselink JR (2001) Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging 22(4):581–594PubMedCrossRefGoogle Scholar
  37. Jokinen H, Frederiksen KS, Garde E, Skimminge A, Siebner H, Waldemar G, Ylikoski R, Madureira S, Verdelho A, van Straaten EC, Barkhof F, Fazekas F, Schmidt R, Pantoni L, Inzitari D, Erkinjuntti T (2012) Callosal tissue loss parallels subtle decline in psychomotor speed: a longitudinal quantitative MRI study. The LADIS Study. Neuropsychologia 50(7):1650–1655. doi: 10.1016/j.neuropsychologia.2012.03.020 PubMedCrossRefGoogle Scholar
  38. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T (2003) Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 142:171–188. doi: 10.1016/S0079-6123(03)42013-X PubMedCrossRefGoogle Scholar
  39. Keren-Happuch E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 35(2):593–615. doi: 10.1002/hbm.22194 CrossRefGoogle Scholar
  40. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE, Collins DL, Gee J, Hellier P, Song JH, Jenkinson M, Lepage C, Rueckert D, Thompson P, Vercauteren T, Woods RP, Mann JJ, Parsey RV (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3):786–802. doi: 10.1016/j.neuroimage.2008.12.037 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399(6732):148–151. doi: 10.1038/20178 PubMedCrossRefGoogle Scholar
  42. Koppelmans V, Hirsiger S, Merillat S, Jancke L, Seidler RD (2015) Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults. Hum Brain Mapp. doi: 10.1002/hbm.22775 Google Scholar
  43. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T (2014) Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13(1):151–177. doi: 10.1007/s12311-013-0511-x PubMedPubMedCentralCrossRefGoogle Scholar
  44. Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19(10):2485–2497. doi: 10.1093/cercor/bhp135 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kuhn S, Romanowski A, Schilling C, Banaschewski T, Barbot A, Barker GJ, Bruhl R, Buchel C, Conrod PJ, Czech K, Dalley JW, Flor H, Garavan H, Hake I, Ittermann B, Ivanov N, Mann K, Lathrop M, Loth E, Ludemann K, Mallik C, Martinot JL, Palafox C, Poline JB, Reuter J, Rietschel M, Robbins TW, Smolka MN, Nees F, Walaszek B, Schumann G, Heinz A, Gallinat J, consortium I (2012) Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds. Neuroimage 59(2):1615–1621. doi: 10.1016/j.neuroimage.2011.08.100 PubMedCrossRefGoogle Scholar
  46. Kuper M, Kaschani P, Thurling M, Stefanescu MR, Burciu RG, Goricke S, Maderwald S, Ladd ME, Hautzel H, Timmann D (2016) Cerebellar fMRI activation increases with increasing working memory demands. Cerebellum 15(3):322–335. doi: 10.1007/s12311-015-0703-7 PubMedCrossRefGoogle Scholar
  47. Langan J, Seidler RD (2011) Age differences in spatial working memory contributions to visuomotor adaptation and transfer. Behav Brain Res 225(1):160–168. doi: 10.1016/j.bbr.2011.07.014 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee NK, Kwon YH, Son SM, Nam SH, Kim JS (2013) The effects of aging on visuomotor coordination and proprioceptive function in the upper limb. J Phys Ther Sci 25(5):627–629. doi: 10.1589/jpts.25.627 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lutz K, Koeneke S, Wustenberg T, Jancke L (2005) Asymmetry of cortical activation during maximum and convenient tapping speed. Neurosci Lett 373(1):61–66. doi: 10.1016/j.neulet.2004.09.058 PubMedCrossRefGoogle Scholar
  50. Manto M, Bower JM, Conforto AB, Delgado-Garcia JM, da Guarda SN, Gerwig M, Habas C, Hagura N, Ivry RB, Marien P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control–the diversity of ideas on cerebellar involvement in movement. Cerebellum 11(2):457–487. doi: 10.1007/s12311-011-0331-9 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Martin JA, Ramsay J, Hughes C, Peters DM, Edwards MG (2015) Age and grip strength predict hand dexterity in adults. PLoS One 10(2):e0117598. doi: 10.1371/journal.pone.0117598 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Merker B, Podell K (2010) Grooved Pegboard Test. In: Kreutzer J, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology, vol 1. Springer, New York, pp 1176–1178Google Scholar
  53. Meyers JE (2010) Trail Making Test. In: Kreutzer J, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology, vol 1. Springer, New York, pp 2537–2538Google Scholar
  54. Miall RC, Reckess GZ, Imamizu H (2001) The cerebellum coordinates eye and hand tracking movements. Nat Neurosci 4(6):638–644. doi: 10.1038/88465 PubMedCrossRefGoogle Scholar
  55. Newson R (2003) Multiple-test procedures and smile plots. Stata J 3(2):109–132Google Scholar
  56. Newson R (2010) Frequentist q-values for multiple-test procedures. Stata J 10(4):568–584Google Scholar
  57. Noble JW, Eng JJ, Kokotilo KJ, Boyd LA (2011) Aging effects on the control of grip force magnitude: an fMRI study. Exp Gerontol 46(6):453–461. doi: 10.1016/j.exger.2011.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L (2012) Memory aging and brain maintenance. Trends Cogn Sci 16(5):292–305. doi: 10.1016/j.tics.2012.04.005 PubMedCrossRefGoogle Scholar
  59. Paradiso S, Andreasen NC, O’Leary DS, Arndt S, Robinson RG (1997) Cerebellar size and cognition: correlations with IQ, verbal memory and motor dexterity. Neuropsychiatry Neuropsychol Behav Neurol 10(1):1–8PubMedGoogle Scholar
  60. Pedersen JR, Johannsen P, Bak CK, Kofoed B, Saermark K, Gjedde A (1998) Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET. Neuroimage 8(2):214–220. doi: 10.1006/nimg.1998.0362 PubMedCrossRefGoogle Scholar
  61. Persson N, Ghisletta P, Dahle CL, Bender AR, Yang Y, Yuan P, Daugherty AM, Raz N (2014) Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms. Neuroimage 103:334–348. doi: 10.1016/j.neuroimage.2014.09.042 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Podell K (2010) Hand Dynamometer. In: Kreutzer J, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology, vol 1. Springer, New York, pp 1208–1209Google Scholar
  63. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129(Pt 2):306–320. doi: 10.1093/brain/awh685 PubMedGoogle Scholar
  64. Raz N, Dupuis JH, Briggs SD, McGavran C, Acker JD (1998) Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. AJNR Am J Neuroradiol 19:65–71PubMedGoogle Scholar
  65. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689. doi: 10.1093/cercor/bhi044 PubMedCrossRefGoogle Scholar
  66. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U (2010) Trajectories of brain aging in middle-aged and older adults: regional and individual differences. NeuroImage 51:501–511PubMedPubMedCentralCrossRefGoogle Scholar
  67. Reitan RM, Wolfson D (1985) The Halstead-Reitan neuropsycholgical test battery: therapy and clinical interpretation. Neuropsychological Press, TucsonGoogle Scholar
  68. Richardson JTE (2011) Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev 6:135–147CrossRefGoogle Scholar
  69. Rodrigue KM, Kennedy KM, Raz N (2005) Aging and longitudinal change in perceptual-motor skill acquisition in healthy adults. J Gerontol Ser B Psychol Sci Soc Sci 60(4):P174–P181CrossRefGoogle Scholar
  70. Ruff RM, Parker SB (1993) Gender- and age-specific changes in motor speed and eye-hand coordination in adults: normative values for the Finger Tapping and Grooved Pegboard Tests. Percept Mot Skills 76(3 Pt 2):1219–1230. doi: 10.2466/pms.1993.76.3c.1219 PubMedCrossRefGoogle Scholar
  71. Rusinek H, De Santi S, Frid D, Tsui WH, Tarshish CY, Convit A, de Leon MJ (2003) Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 229(3):691–696. doi: 10.1148/radiol.2293021299 PubMedCrossRefGoogle Scholar
  72. Salthouse TA (2011) What cognitive abilities are involved in trail-making performance? Intelligence 39(4):222–232. doi: 10.1016/j.intell.2011.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Schatz P (2010) Finger Tapping Test. In: Kreutzer J, DeLuca J, Caplan B (eds) Encyclopedia of clinical neuropsychology, vol 1. Springer, New York, pp 1050–1051Google Scholar
  74. Schlerf JE, Verstynen TD, Ivry RB, Spencer RM (2010) Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol 103(6):3330–3336. doi: 10.1152/jn.01117.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Schoppe KJ, Hamster W (2011) Motor performance series; comprehensive fine motor abilities test battery with special norms for Morbus Parkinson patients. Vienne Test System—Psychological assessment. Schuhfried GmbH, MoedlingGoogle Scholar
  76. Schufried G (2011) Special Ability Tests. Two-hand coordination. Vienne test system—psychological assessment. Schuhfried GmbH, MoedlingGoogle Scholar
  77. Steinlin M, Wingeier K (2013) Cerebellum and cognition. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders. Springer Science + Business Media, Dordrecht, pp 1687–1699. doi: 10.1007/978-94-007-1333-8
  78. Sternberg DA, Ballard K, Hardy JL, Katz B, Doraiswamy PM, Scanlon M (2013) The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging. Front Hum Neurosci 7:292. doi: 10.3389/fnhum.2013.00292 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Stoodley CJ (2012) The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 11(2):352–365. doi: 10.1007/s12311-011-0260-7 PubMedCrossRefGoogle Scholar
  80. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501. doi: 10.1016/j.neuroimage.2008.08.039 PubMedCrossRefGoogle Scholar
  81. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46(7):831–844. doi: 10.1016/j.cortex.2009.11.008 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59(2):1560–1570. doi: 10.1016/j.neuroimage.2011.08.065 PubMedCrossRefGoogle Scholar
  83. Stoodley CJ, Desmond JE, Schmahmann JD (2013) Functional topography of the human cerebellum revealed by functional neuroimaging studies. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders. Springer Science + Business Media, Dordrecht, pp 735–764. doi: 10.1007/978-94-007-1333-8
  84. Sullivan EV, Rohlfing T, Pfefferbaum A (2010) Longitudinal study of callosal microstructure in the normal adult aging brain using quantitative DTI fiber tracking. Dev Neuropsychol 35(3):233–256. doi: 10.1080/87565641003689556 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN (2010) Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 49(1):63–70. doi: 10.1016/j.neuroimage.2009.08.016 PubMedCrossRefGoogle Scholar
  86. Tombaugh TN (2004) Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol 19(2):203–214. doi: 10.1016/S0887-6177(03)00039-8 PubMedCrossRefGoogle Scholar
  87. Tomlinson SP, Davis NJ, Morgan HM, Bracewell RM (2014) Cerebellar contributions to verbal working memory. Cerebellum 13(3):354–361. doi: 10.1007/s12311-013-0542-3 PubMedCrossRefGoogle Scholar
  88. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320. doi: 10.1109/TMI.2010.2046908 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Vandenberg SG, Kuse AR (1978) Mental rotations, a group test of three-dimensional spatial visualization. Percept Motor Skills 47(2):599–604PubMedCrossRefGoogle Scholar
  90. Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356. doi: 10.1016/j.neuroimage.2008.04.025 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yuan P, Raz N (2014) Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev 42:180–192. doi: 10.1016/j.neubiorev.2014.02.005 PubMedCrossRefGoogle Scholar
  92. Ziegler G, Dahnke R, Jancke L, Yotter RA, May A, Gaser C (2012) Brain structural trajectories over the adult lifespan. Hum Brain Mapp 33(10):2377–2389. doi: 10.1002/hbm.21374 PubMedCrossRefGoogle Scholar
  93. Zimmermann P, Fimm BT (2015) Test battery for attention performance (TAP). Psytest. Accessed August 2 2015
  94. Zollig J, Merillat S, Eschen A, Rocke C, Martin M, Jancke L (2011) Plasticity and imaging research in healthy aging: core ideas and profile of the International Normal Aging and Plasticity Imaging Center (INAPIC). Gerontology 57(2):190–192. doi: 10.1159/000324307 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of KinesiologyUniversity of MichiganAnn ArborUSA
  2. 2.International Normal Aging and Plasticity Imaging Center (INAPIC)University of ZurichZurichSwitzerland
  3. 3.University Research Priority Program “Dynamics of Healthy Aging”University of ZurichZurichSwitzerland
  4. 4.Division of NeuropsychologyUniversity of ZurichZurichSwitzerland
  5. 5.Department of Special EducationKing Abdulaziz UniversityJeddahSaudi Arabia
  6. 6.Department of PsychologyUniversity of MichiganAnn ArborUSA
  7. 7.Neuroscience ProgramUniversity of MichiganAnn ArborUSA
  8. 8.Institute of GerontologyUniversity of MichiganAnn ArborUSA

Personalised recommendations