Brain Structure and Function

, Volume 222, Issue 3, pp 1231–1241 | Cite as

Rapid language-related plasticity: microstructural changes in the cortex after a short session of new word learning

  • Shir Hofstetter
  • Naama Friedmann
  • Yaniv Assaf
Original Article


Human brain imaging revealed that the brain can undergo structural plasticity following new learning experiences. Most magnetic resonance imaging (MRI) uncovered morphometric alternation in cortical density after the long-term training of weeks to months. A recent diffusion tensor imaging (DTI) study has found changes in diffusion indices after 2 h of training, primarily in the hippocampus. However, whether a short learning experience can induce microstructural changes in the neocortex is still unclear. Here, we used diffusion MRI, a method sensitive to tissue microstructure, to study cortical plasticity. To attain cortical involvement, we used a short language task (under 1 h) of introducing new lexical items (flower names) to the lexicon. We have found significant changes in diffusivity in cortical regions involved in language and reading (inferior frontal gyrus, middle temporal gyrus, and inferior parietal lobule). In addition, the difference in the values of diffusivity correlated with the lexical learning rate in the task. Moreover, significant changes were found in white matter tracts near the cortex, and the extent of change correlated with behavioral measures of lexical learning rate. These findings provide first evidence of short-term cortical plasticity in the human brain after a short language learning task. It seems that short training of less than an hour of high cognitive demand can induce microstructural changes in the cortex, suggesting a rapid time scale of neuroplasticity and providing additional evidence of the power of MRI to investigate the temporal and spatial progressions of this process.


DTI Language Neuroplasticity Lexical learning 



The authors acknowledge with thanks the support of the Israel Science Foundation (ISF Grant no. 994/08) and by HFSP grant (no. RGP0057/2016) and of the Australian Research Council Centre of Excellence for Cognition and its Disorders (CE110001021),


  1. Assaf Y, Pasternak O (2007) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61. doi: 10.1007/s12031-007-0029-0 CrossRefGoogle Scholar
  2. Bernal B, Ardila A (2009) The role of the arcuate fasciculus in conduction aphasia. Brain 132(Pt 9):2309–2316. doi: 10.1093/brain/awp206 CrossRefPubMedGoogle Scholar
  3. Binder J, Price C (2006) Functional imaging of language. In: CaA Kingstone (ed) Handbook on functional neuroimaging of cognition, 2nd edn. MIT Press, Cambridge, pp 187–251Google Scholar
  4. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19(12):2767–2796. doi: 10.1093/cercor/bhp055 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Black SE, Behrmann M (1994) Localization in alexia. Localization and neuroimaging in neuropsychology. Foundations of neuropsychology. Academic Press, San Diego, pp 331–376Google Scholar
  6. Bles M, Jansma BM (2008) Phonological processing of ignored distractor pictures, an fMRI investigation. BMC Neurosci 9:20. doi: 10.1186/1471-2202-9-20 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y (2011) Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One 6(6):e20678. doi: 10.1371/journal.pone.0020678 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Breitenstein C, Jansen A, Deppe M, Foerster A-F, Sommer J, Wolbers T, Knecht S (2005) Hippocampus activity differentiates good from poor learners of a novel lexicon. NeuroImage 25(3):958–968. doi: 10.1016/j.neuroimage.2004.12.019 CrossRefPubMedGoogle Scholar
  9. Buckingham HW (2006) The Marc Dax (1770–1837)/Paul Broca (1824–1880) controversy over priority in science: Left hemisphere specificity for seat of articulate language and for lesions that cause aphemia. Clin linguist phon 20(7–8):613–619Google Scholar
  10. Butterworth B (1992) Disorders of phonological encoding. Cognition 42(1–3):261–286Google Scholar
  11. Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44(8):953–961. doi: 10.1016/j.cortex.2008.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16. doi: 10.1002/ana.20319 CrossRefPubMedGoogle Scholar
  13. Chomsky N (1980) On cognitive structures and their development: a reply to piaget. In: Piattelli-Palmarini M (ed) Language and learning: the debate between Jean Piaget and Noam Chomsky. Harvard University Press, pp 35–52Google Scholar
  14. Chomsky N (1986) Knowledge of language: its nature, origin, and use. Greenwood Publishing GroupGoogle Scholar
  15. Chomsky N (2005) Three factors in language design. Linguist Inq 36(1):1–22CrossRefGoogle Scholar
  16. Corina DP, Vaid J, Bellugi U (1992) The linguistic basis of left hemisphere specialization. Science 255(5049):1258–1260CrossRefPubMedGoogle Scholar
  17. Cornelissen K, Laine M, Renvall K, Saarinen T, Martin N, Salmelin R (2004) Learning new names for new objects: cortical effects as measured by magnetoencephalography. Brain Lang 89(3):617–622. doi: 10.1016/j.bandl.2003.12.007 CrossRefPubMedGoogle Scholar
  18. Crain S (1991) Language acquisition in the absence of experience. Behav Brain Sci 14(04):597–612CrossRefGoogle Scholar
  19. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9(2):179–194. doi: 10.1006/nimg.1998.0395 CrossRefPubMedGoogle Scholar
  20. Damasio H, Tranel D, Grabowski T, Adolphs R, Damasio A (2004) Neural systems behind word and concept retrieval. Cognition 92(1–2):179–229. doi: 10.1016/j.cognition.2002.07.001 CrossRefPubMedGoogle Scholar
  21. Davis MH, Di Betta AM, Macdonald MJ, Gaskell MG (2009) Learning and consolidation of novel spoken words. J Cogn Neurosci 21(4):803–820. doi: 10.1162/jocn.2009.21059 CrossRefPubMedPubMedCentralGoogle Scholar
  22. DeLeon J, Gottesman RF, Kleinman JT, Newhart M, Davis C, Heidler-Gary J, Lee A, Hillis AE (2007) Neural regions essential for distinct cognitive processes underlying picture naming. Brain 130(5):1408–1422. doi: 10.1093/brain/awm011 CrossRefPubMedGoogle Scholar
  23. Draganski B (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci 26(23):6314–6317. doi: 10.1523/jneurosci.4628-05.2006 CrossRefPubMedGoogle Scholar
  24. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312. doi: 10.1038/427311a CrossRefPubMedGoogle Scholar
  25. Dronkers N, Redfern B, Knight R (2000) The neural architecture of language disorders. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, pp 949–958Google Scholar
  26. Friederici AD (2011) The brain basis of language processing: from structure to function. Physiol Rev 91(4):1357–1392. doi: 10.1152/physrev.00006.2011 CrossRefPubMedGoogle Scholar
  27. Friedmann N, Biran M, Dotan D (2013) Lexical retrieval and breakdown in aphasia and developmental language impairment. In: Boeckx C, Grohmann KK (eds) The cambridge handbook of biolinguistics, UK. Cambridge University Press, Cambridge, pp 350–374Google Scholar
  28. Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW (2006) Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol 4(11):e343. doi: 10.1371/journal.pbio.0040343 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304. doi: 10.1126/science.1252304 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gronholm P, Rinne JO, Vorobyev V, Laine M (2005) Naming of newly learned objects: a PET activation study. Brain Res Cogn Brain Res 25(1):359–371. doi: 10.1016/j.cogbrainres.2005.06.010 CrossRefPubMedGoogle Scholar
  31. Gu Y, Janoschka S, Ge S (2013) Neurogenesis and hippocampal plasticity in adult brain. Curr Top Behav Neurosci 15:31–48. doi: 10.1007/7854_2012_217 CrossRefPubMedGoogle Scholar
  32. Hickok G, Poeppel D (2000) Towards a functional neuroanatomy of speech perception. Trends Cognit Sci 4(4):131–138. doi: 10.1016/S1364-6613(00)01463-7 CrossRefGoogle Scholar
  33. Hofstetter S, Tavor I, Tzur Moryosef S, Assaf Y (2013) Short-term learning induces white matter plasticity in the fornix. J Neurosci 33(31):12844–12850. doi: 10.1523/JNEUROSCI.4520-12.2013 CrossRefPubMedGoogle Scholar
  34. Howard D, Patterson K, Wise R, Brown WD, Friston K, Weiller C, Frackowiak R (1992) The cortical localization of the lexicons. Positron emission tomography evidence. Brain 115(Pt 6):1769–1782CrossRefPubMedGoogle Scholar
  35. Hultén A, Vihla M, Laine M, Salmelin R (2009) Accessing newly learned names and meanings in the native language. Hum Brain Mapp 30(3):976–989. doi: 10.1002/hbm.20561 CrossRefPubMedGoogle Scholar
  36. Indefrey P (2007) Brain imaging studies of language production. In: Gaskell G (ed) Oxford handbook of psycholinguistics. The oxford handbook of psycholinguistics. Oxford. doi: 10.1093/oxfordhb/9780198568971.001.0001
  37. Indefrey P (2011) The spatial and temporal signatures of word production components: a critical update. Front Psychol 2:255. doi: 10.3389/fpsyg.2011.00255 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Indefrey P, Levelt WJ (2000) The neural correlates of language productionGoogle Scholar
  39. Indefrey P, Levelt WJM (2004) The spatial and temporal signatures of word production components. Cognition 92(1–2):101–144. doi: 10.1016/j.cognition.2002.06.001 CrossRefPubMedGoogle Scholar
  40. Joubert S, Beauregard M, Walter N, Bourgouin P, Beaudoin G, Leroux JM, Karama S, Lecours AR (2004) Neural correlates of lexical and sublexical processes in reading. Brain Lang 89(1):9–20. doi: 10.1016/S0093-934X(03)00403-6 CrossRefPubMedGoogle Scholar
  41. Lee H, Devlin JT, Shakeshaft C, Stewart LH, Brennan A, Glensman J, Pitcher K, Crinion J, Mechelli A, Frackowiak RSJ, Green DW, Price CJ (2007) Anatomical traces of vocabulary acquisition in the adolescent brain. J Neurosci 27(5):1184–1189. doi: 10.1523/jneurosci.4442-06.2007 CrossRefPubMedGoogle Scholar
  42. Leemans AJB, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of Intl Soc Mag Reson Med, Hawaii, USA, pp 3537Google Scholar
  43. Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, Henkelman RM, Josselyn SA, Sled JG (2011) Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. NeuroImage 54(3):2086–2095. doi: 10.1016/j.neuroimage.2010.09.086 CrossRefPubMedGoogle Scholar
  44. Levelt WJ (1992) Accessing words in speech production: stages, processes and representations. Cognition 42(1):1–22Google Scholar
  45. Lopez-Barroso D, Catani M, Ripolles P, Dell’Acqua F, Rodriguez-Fornells A, de Diego-Balaguer R (2013) Word learning is mediated by the left arcuate fasciculus. Proc Natl Acad Sci USA 110(32):13168–13173. doi: 10.1073/pnas.1301696110 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RSJ, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci 97(8):4398–4403. doi: 10.1073/pnas.070039597 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Majerus S, Van der Linden M, Collette F, Laureys S, Poncelet M, Degueldre C, Delfiore G, Luxen A, Salmon E (2005) Modulation of brain activity during phonological familiarization. Brain Lang 92(3):320–331. doi: 10.1016/j.bandl.2004.07.003 CrossRefPubMedGoogle Scholar
  48. Martensson J, Eriksson J, Bodammer NC, Lindgren M, Johansson M, Nyberg L, Lövdén M (2012) Growth of language-related brain areas after foreign language learning. NeuroImage 63(1):240–244. doi: 10.1016/j.neuroimage.2012.06.043 CrossRefPubMedGoogle Scholar
  49. May A (2011) Experience-dependent structural plasticity in the adult human brain. Trends Cognit Sci 15(10):475–482. doi: 10.1016/j.tics.2011.08.002 CrossRefGoogle Scholar
  50. Mechelli A, Crinion JT, Noppeney U, O’Doherty J, Ashburner J, Frackowiak RS, Price CJ (2004) Neurolinguistics: structural plasticity in the bilingual brain. Nature 431(7010):757. doi: 10.1038/431757a CrossRefPubMedGoogle Scholar
  51. Mestres-Misse A, Rodriguez-Fornells A, Munte TF (2007) Watching the brain during meaning acquisition. Cereb Cortex 17(8):1858–1866. doi: 10.1093/cercor/bhl094 CrossRefPubMedGoogle Scholar
  52. Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF (2010) Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci USA 107(30):13240–13245. doi: 10.1073/pnas.1000674107 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nickels L (1997) Spoken word production and its breakdown in aphasia. Cognitive neuropsychology reviews. Psychology press, Hove, East Sussex, UK Google Scholar
  54. Nickels L, Howard D (1994) A frequent occurrence? Factors affecting the production of semantic errors in aphasic naming. Cognit Neuropsychol 11(3):289–320Google Scholar
  55. Paulesu E, Vallar G, Berlingeri M, Signorini M, Vitali P, Burani C, Perani D, Fazio F (2009) Supercalifragilisticexpialidocious: how the brain learns words never heard before. NeuroImage 45(4):1368–1377. doi: 10.1016/j.neuroimage.2008.12.043 CrossRefPubMedGoogle Scholar
  56. Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34(38):12738–12744. doi: 10.1523/JNEUROSCI.2401-14.2014 CrossRefPubMedGoogle Scholar
  57. Philipose LE, Gottesman RF, Newhart M, Kleinman JT, Herskovits EH, Pawlak MA, Marsh EB, Davis C, Heidler-Gary J, Hillis AE (2007) Neural regions essential for reading and spelling of words and pseudowords. Ann Neurol 62(5):481–492CrossRefPubMedGoogle Scholar
  58. Poeppel D, Hickok G (2004) Towards a new functional anatomy of language. Cognition 92(1–2):1–12. doi: 10.1016/j.cognition.2003.11.001 CrossRefPubMedGoogle Scholar
  59. Postans M, Hodgetts CJ, Mundy ME, Jones DK, Lawrence AD, Graham KS (2014) Interindividual variation in fornix microstructure and macrostructure is related to visual discrimination accuracy for scenes but not faces. J Neurosci 34(36):12121–12126. doi: 10.1523/JNEUROSCI.0026-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Price CJ (1998) The functional anatomy of word comprehension and production. Trends Cognit Sci 2(8):281–288. doi: 10.1016/S1364-6613(98)01201-7 CrossRefGoogle Scholar
  61. Price CJ, Wise RJ, Watson JD, Patterson K, Howard D, Frackowiak RS (1994) Brain activity during reading. The effects of exposure duration and task. Brain 117 (Pt 6):1255–1269Google Scholar
  62. Rudebeck SR, Scholz J, Millington R, Rohenkohl G, Johansen-Berg H, Lee ACH (2009) Fornix microstructure correlates with recollection but not familiarity memory. J Neurosci 29(47):14987–14992. doi: 10.1523/jneurosci.4707-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y (2012) Learning in the fast lane: new insights into neuroplasticity. Neuron 73(6):1195–1203. doi: 10.1016/j.neuron.2012.01.025 CrossRefPubMedGoogle Scholar
  64. Schlegel AA (2012) White matter structure changes as adults learn a second language. J Cognit NeurosciGoogle Scholar
  65. Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12(11):1370–1371. doi: 10.1038/nn.2412 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schwartz MF, Kimberg DY, Walker GM, Faseyitan O, Brecher A, Dell GS, Coslett HB (2009) Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. Brain awp284Google Scholar
  67. Shtyrov Y (2011) Fast mapping of novel word forms traced neurophysiologically. Front Psychol 2:340. doi: 10.3389/fpsyg.2011.00340 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shtyrov Y, Nikulin VV, Pulvermuller F (2010) Rapid cortical plasticity underlying novel word learning. J Neurosci 30(50):16864–16867. doi: 10.1523/jneurosci.1376-10.2010 CrossRefPubMedGoogle Scholar
  69. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061 CrossRefPubMedGoogle Scholar
  70. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31(4):1487–1505. doi: 10.1016/j.neuroimage.2006.02.024 CrossRefPubMedGoogle Scholar
  71. Stein M, Federspiel A, Koenig T, Wirth M, Strik W, Wiest R, Brandeis D, Dierks T (2012) Structural plasticity in the language system related to increased second language proficiency. Cortex 48(4):458–465. doi: 10.1016/j.cortex.2010.10.007 CrossRefPubMedGoogle Scholar
  72. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36(5):855–868CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tasaki I, Byrne PM (1990) Volume expansion of nonmyelinated nerve fibers during impulse conduction. Biophys J 57(3):633–635. doi: 10.1016/S0006-3495(90)82580-7 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88(3):983–1008. doi: 10.1152/physrev.00036.2007 CrossRefPubMedGoogle Scholar
  75. Veroude K, Norris DG, Shumskaya E, Gullberg M, Indefrey P (2010) Functional connectivity between brain regions involved in learning words of a new language. Brain Lang 113(1):21–27. doi: 10.1016/j.bandl.2009.12.005 CrossRefPubMedGoogle Scholar
  76. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333(6049):1647–1651. doi: 10.1126/science.1206998 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Weissborn J, Goodluck H, Roeper T (1992) Theoretical issues in language acquisition: continuity and change in development. Psychology PressGoogle Scholar
  78. Wilson SM, Isenberg AL, Hickok G (2009) Neural correlates of word production stages delineated by parametric modulation of psycholinguistic variables. Hum Brain Mapp 30(11):3596–3608. doi: 10.1002/hbm.20782 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275):915–919. doi: 10.1038/nature08389 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15(4):528–536. doi: 10.1038/nn.3045 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Shir Hofstetter
    • 1
  • Naama Friedmann
    • 1
    • 2
  • Yaniv Assaf
    • 1
    • 3
  1. 1.Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
  2. 2.Language and Brain Lab, School of EducationTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Neurobiology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations