Human navigation network: the intrinsic functional organization and behavioral relevance

Abstract

Spatial navigation is a crucial ability for living. Previous work has revealed multiple distributed brain regions associated with human navigation. However, little is known about how these regions work together as a network (referred to as navigation network) to support flexible navigation. In a novel protocol, we combined neuroimaging meta-analysis, and functional connectivity and behavioral data from the same subjects. Briefly, we first constructed the navigation network for each participant, by combining a large-scale neuroimaging meta-analysis (with the Neurosynth) and resting-state functional magnetic resonance imaging. Then, we investigated multiple topological properties of the navigation networks, including small-worldness, modularity, and highly connected hubs. Finally, we explored the behavioral relevance of these intrinsic properties in a large sample of healthy young adults (N = 190). We found that navigation networks showed small-world and modular organization at global level. More importantly, we found that increased small-worldness and modularity of the navigation network were associated with better navigation ability. Finally, we found that the right retrosplenial complex (RSC) acted as one of the hubs in the navigation network, and that higher betweenness of this region correlated with better navigation ability, suggesting a critical role of the RSC in modulating the navigation network in human brain. Our study takes one of the first steps toward understanding the underlying organization of the navigation network. Moreover, these findings suggest the potential applications of the novel approach to investigating functionally meaningful networks in human brain and their relations to the behavioral impairments in the aging and psychiatric patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aguirre GK, D’Esposito M (1999) Topographical disorientation: a synthesis and taxonomy. Brain 122(Pt 9):1613–1628

    PubMed  Article  Google Scholar 

  2. Andersson JLR, Jenkinson M, Smith S (2007a) Non-linear optimisation. FMRIB Technical report TR0JA2. FMRIB Centre, Oxford, United Kingdom. http://www.fmrib.ox.ac.uk/analysis/techrep

  3. Andersson JLR, Jenkinson M, Smith S (2007b) Non-linear registration, aka Spatial normalisation. FMRIB Technical report TR0JA2. FMRIB Centre, Oxford, United Kingdom. http://www.fmrib.ox.ac.uk/analysis/techrep

  4. Arnold AE, Burles F, Krivoruchko T, Liu I, Rey CD, Levy RM, Iaria G (2013) Cognitive mapping in humans and its relationship to other orientation skills. Exp Brain Res 224(3):359–372. doi:10.1007/s00221-012-3316-0

    PubMed  Article  Google Scholar 

  5. Arnold AE, Protzner AB, Bray S, Levy RM, Iaria G (2014) Neural network configuration and efficiency underlies individual differences in spatial orientation ability. J Cogn Neurosci 26(2):380–394. doi:10.1162/jocn_a_00491

    PubMed  Article  Google Scholar 

  6. Auger SD, Mullally SL, Maguire EA (2012) Retrosplenial cortex codes for permanent landmarks. PLoS One 7(8):e43620. doi:10.1371/journal.pone.0043620

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523. doi:10.1177/1073858406293182

    PubMed  Article  Google Scholar 

  8. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS, Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ, Hyde JS, Kiviniemi VJ, Kotter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B, Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC, Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107(10):4734–4739. doi:10.1073/pnas.0911855107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Breckel TP, Thiel CM, Bullmore ET, Zalesky A, Patel AX, Giessing C (2013) Long-term effects of attentional performance on functional brain network topology. PLoS One 8(9):e74125. doi:10.1371/journal.pone.0074125

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Brown TI, Whiteman AS, Aselcioglu I, Stern CE (2014) Structural differences in hippocampal and prefrontal gray matter volume support flexible context-dependent navigation ability. J Neurosci 34(6):2314–2320. doi:10.1523/JNEUROSCI.2202-13.2014

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. doi:10.1038/nrn2575

    CAS  PubMed  Article  Google Scholar 

  12. Burgess N, Maguire EA, Spiers HJ, O’Keefe J (2001) A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14(2):439–453. doi:10.1006/nimg.2001.0806

    CAS  PubMed  Article  Google Scholar 

  13. Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114(2):340–375. doi:10.1037/0033-295X.114.2.340

    PubMed  PubMed Central  Article  Google Scholar 

  14. Cain DP, Humpartzoomian R, Boon F (2006) Retrosplenial cortex lesions impair water maze strategies learning or spatial place learning depending on prior experience of the rat. Behav Brain Res 170(2):316–325. doi:10.1016/j.bbr.2006.03.003

    PubMed  Article  Google Scholar 

  15. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18(10):2374–2381. doi:10.1093/cercor/bhn003

    PubMed  PubMed Central  Article  Google Scholar 

  16. Ciaramelli E (2008) The role of ventromedial prefrontal cortex in navigation: a case of impaired wayfinding and rehabilitation. Neuropsychologia 46(7):2099–2105. doi:10.1016/j.neuropsychologia.2007.11.029

    PubMed  Article  Google Scholar 

  17. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83(1):238–251. doi:10.1016/j.neuron.2014.05.014

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Cooper BG, Mizumori SJ (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J Neurosci 21(11):3986–4001 (pii: 21/11/3986)

    CAS  PubMed  Google Scholar 

  19. Cornwell BR, Johnson LL, Holroyd T, Carver FW, Grillon C (2008) Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J Neurosci 28(23):5983–5990. doi:10.1523/JNEUROSCI.5001-07.2008

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Danon L, Diaz-Guilera A, Arenas A (2006) Effect of size heterogeneity on community identification in complex networks. J Stat Mech Theory Exp 2006:P11010

    Article  Google Scholar 

  21. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188. doi:10.1038/nature01964

    CAS  PubMed  Article  Google Scholar 

  22. Ekstrom AD, Arnold AE, Iaria G (2014) A critical review of the allocentric spatial representation and its neural underpinnings: toward a network-based perspective. Front Hum Neurosci 8:803. doi:10.3389/fnhum.2014.00803

    PubMed  PubMed Central  Article  Google Scholar 

  23. Epstein RA (2008) Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 12(10):388–396. doi:10.1016/j.tics.2008.07.004

    PubMed  PubMed Central  Article  Google Scholar 

  24. Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598–601. doi:10.1038/33402

    CAS  PubMed  Article  Google Scholar 

  25. Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23(1):115–125 (pii: S0896-6273(00)80758-8)

    CAS  PubMed  Article  Google Scholar 

  26. Epstein R, Deyoe EA, Press DZ, Rosen AC, Kanwisher N (2001) Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cogn Neuropsychol 18(6):481–508. doi:10.1080/02643290125929

    CAS  PubMed  Article  Google Scholar 

  27. Epstein RA, Higgins JS, Thompson-Schill SL (2005) Learning places from views: variation in scene processing as a function of experience and navigational ability. J Cogn Neurosci 17(1):73–83. doi:10.1162/0898929052879987

    PubMed  Article  Google Scholar 

  28. Fonteneau E, Bozic M, Marslen-Wilson WD (2015) Brain network connectivity during language comprehension: interacting linguistic and perceptual subsystems. Cereb Cortex 25(10):3962–3976. doi:10.1093/cercor/bhu283

    PubMed  Article  Google Scholar 

  29. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678. doi:10.1073/pnas.0504136102

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26):10046–10051. doi:10.1073/pnas.0604187103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270–3283. doi:10.1152/jn.90777.2008

    PubMed  PubMed Central  Article  Google Scholar 

  32. Freeman LC (1977) A set of measures of centrality based on betweenness. Am Sociol Assoc 40(1):35–41

    Google Scholar 

  33. Ghaem O, Mellet E, Crivello F, Tzourio N, Mazoyer B, Berthoz A, Denis M (1997) Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. NeuroReport 8(3):739–744

    CAS  PubMed  Article  Google Scholar 

  34. Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484(7392):62–68. doi:10.1038/nature10918

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C, Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One 4(4):e5226. doi:10.1371/journal.pone.0005226

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Hegarty M, Richardson AE, Montello DR, Lovelace K, Subbiah I (2002) Development of a self-report measure of environmental spatial ability. Intelligence 30(5):425–447

    Article  Google Scholar 

  37. Helfinstein SM, Schonberg T, Congdon E, Karlsgodt KH, Mumford JA, Sabb FW, Cannon TD, London ED, Bilder RM, Poldrack RA (2014) Predicting risky choices from brain activity patterns. Proc Natl Acad Sci USA 111(7):2470–2475. doi:10.1073/pnas.1321728111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3(4):e0002051. doi:10.1371/journal.pone.0002051

    PubMed  Article  CAS  Google Scholar 

  39. Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N (2010) Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc Natl Acad Sci USA 107(32):14466–14471. doi:10.1073/pnas.1004243107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Ikkai A, Curtis CE (2011) Common neural mechanisms supporting spatial working memory, attention and motor intention. Neuropsychologia 49(6):1428–1434. doi:10.1016/j.neuropsychologia.2010.12.020

    PubMed  Article  Google Scholar 

  41. Jahn K, Deutschlander A, Stephan T, Strupp M, Wiesmann M, Brandt T (2004) Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22(4):1722–1731. doi:10.1016/j.neuroimage.2004.05.017

    PubMed  Article  Google Scholar 

  42. Janzen G, Jansen C, van Turennout M (2008) Memory consolidation of landmarks in good navigators. Hippocampus 18(1):40–47. doi:10.1002/hipo.20364

    PubMed  Article  Google Scholar 

  43. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156 (pii: S1361841501000366)

    CAS  PubMed  Article  Google Scholar 

  44. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841 (pii: S1053811902911328)

    PubMed  Article  Google Scholar 

  45. Kim JG, Aminoff EM, Kastner S, Behrmann M (2015) A neural basis for developmental topographic disorientation. J Neurosci 35(37):12954–12969

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Kong XZ, Zhen Z, Li X, Lu HH, Wang R, Liu L, He Y, Zang Y, Liu J (2014) Individual differences in impulsivity predict head motion during magnetic resonance imaging. PLoS One 9(8):e104989. doi:10.1371/journal.pone.0104989

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Kong XZ, Huang Y, Zhen Z, Huang L, Wang X, Yang Z, Liu J (2016a) Sex-linked association between cortical scene selectivity and spatial navigation ability (submitted)

  48. Kong XZ, Song Y, Zhen Z, Liu J (2016b) Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cereb Cortex. doi:10.1093/cercor/bhv322

    Google Scholar 

  49. Kozlowski LT, Bryant KJ (1977) Sense-of-direction, spatial orientation, and cognitive maps. J Exp Psychol Hum Percept Perform 3(4):590–598

    Article  Google Scholar 

  50. Lebedev AV, Westman E, Simmons A, Lebedeva A, Siepel FJ, Pereira JB, Aarsland D (2014) Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Front Syst Neurosci 8:45. doi:10.3389/fnsys.2014.00045

    PubMed  PubMed Central  Google Scholar 

  51. Li Y, Liu Y, Li J, Qin W, Li K, Yu C, Jiang T (2009) Brain anatomical network and intelligence. PLoS Comput Biol 5(5):e1000395. doi:10.1371/journal.pcbi.1000395

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Maguire EA (2001) The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 42(3):225–238

    CAS  PubMed  Article  Google Scholar 

  53. Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280(5365):921–924

    CAS  PubMed  Article  Google Scholar 

  54. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 97(8):4398–4403. doi:10.1073/pnas.070039597

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Marchette SA, Vass LK, Ryan J, Epstein RA (2014) Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat Neurosci 17(11):1598–1606. doi:10.1038/nn.3834

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913. doi:10.1126/science.1065103

    CAS  PubMed  Article  Google Scholar 

  57. Mellet E, Tzourio N, Denis M, Mazoyer B (1995) A positron emission tomography study of visual and mental spatial exploration. J Cogn Neurosci 7(4):433–445. doi:10.1162/jocn.1995.7.4.433

    CAS  PubMed  Article  Google Scholar 

  58. Mendez MF, Cherrier MM (2003) Agnosia for scenes in topographagnosia. Neuropsychologia 41(10):1387–1395 (pii: S0028393203000411)

    PubMed  Article  Google Scholar 

  59. Mesulam MM, Mufson EJ (1982) Insula of the old world monkey. III: efferent cortical output and comments on function. J Comp Neurol 212(1):38–52. doi:10.1002/cne.902120104

    CAS  PubMed  Article  Google Scholar 

  60. Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinform 3:37. doi:10.3389/neuro.11.037.2009

    PubMed  PubMed Central  Article  Google Scholar 

  61. Moffat SD, Kennedy KM, Rodrigue KM, Raz N (2007) Extrahippocampal contributions to age differences in human spatial navigation. Cereb Cortex 17(6):1274–1282. doi:10.1093/cercor/bhl036

    PubMed  Article  Google Scholar 

  62. Mullally SL, Maguire EA (2011) A new role for the parahippocampal cortex in representing space. J Neurosci 31(20):7441–7449. doi:10.1523/JNEUROSCI.0267-11.2011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44(3):893–905. doi:10.1016/j.neuroimage.2008.09.036

    PubMed  Article  Google Scholar 

  64. Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(6 Pt 2):066133

    CAS  Article  Google Scholar 

  65. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582. doi:10.1073/pnas.0601602103

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Newman ME, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69(2 Pt 2):026113

    CAS  Article  Google Scholar 

  67. O’Craven KM, Kanwisher N (2000) Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J Cogn Neurosci 12(6):1013–1023

    PubMed  Article  Google Scholar 

  68. Ohnishi T, Matsuda H, Hirakata M, Ugawa Y (2006) Navigation ability dependent neural activation in the human brain: an fMRI study. Neurosci Res 55(4):361–369. doi:10.1016/j.neures.2006.04.009

    PubMed  Article  Google Scholar 

  69. O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175. doi:10.1016/0006-8993(71)90358-1

    PubMed  Article  Google Scholar 

  70. Onoda K, Yamaguchi S (2013) Small-worldness and modularity of the resting-state functional brain network decrease with aging. Neurosci Lett 556:104–108. doi:10.1016/j.neulet.2013.10.023

    CAS  PubMed  Article  Google Scholar 

  71. Park S, Chun MM (2009) Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47(4):1747–1756. doi:10.1016/j.neuroimage.2009.04.058

    PubMed  PubMed Central  Article  Google Scholar 

  72. Poldrack RA (2011) Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron 72(5):692–697. doi:10.1016/j.neuron.2011.11.001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59(3):2142–2154. doi:10.1016/j.neuroimage.2011.10.018

    PubMed  Article  Google Scholar 

  74. Raven J (ed) (1995) Advanced progressive matrices sets I and II. Oxford Psychologist Press Ltd, Oxford

    Google Scholar 

  75. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. doi:10.1016/j.neuroimage.2009.10.003

    PubMed  Article  Google Scholar 

  76. Sala-Llonch R, Junque C, Arenaza-Urquijo EM, Vidal-Pineiro D, Valls-Pedret C, Palacios EM, Domenech S, Salva A, Bargallo N, Bartres-Faz D (2014) Changes in whole-brain functional networks and memory performance in aging. Neurobiol Aging 35(10):2193–2202. doi:10.1016/j.neurobiolaging.2014.04.007

    PubMed  Article  Google Scholar 

  77. Schedlbauer AM, Copara MS, Watrous AJ, Ekstrom AD (2014) Multiple interacting brain areas underlie successful spatiotemporal memory retrieval in humans. Sci Rep 4:6431. doi:10.1038/srep06431

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171(3972):701–703

    CAS  PubMed  Article  Google Scholar 

  79. Sholl MJ (1988) The relationship between sense of direction and mental geographic updating. Intelligence 12(3):299–314

    Article  Google Scholar 

  80. Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467–482

    Google Scholar 

  81. Sobel DF, Gallen CC, Schwartz BJ, Waltz TA, Copeland B, Yamada S, Hirschkoff EC, Bloom FE (1993) Locating the central sulcus: comparison of MR anatomic and magnetoencephalographic functional methods. AJNR Am J Neuroradiol 14(4):915–925

    CAS  PubMed  Google Scholar 

  82. Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4):1826–1840. doi:10.1016/j.neuroimage.2006.01.037

    PubMed  Article  Google Scholar 

  83. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42. doi:10.1371/journal.pcbi.0010042

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3. doi:10.1186/1753-4631-1-3

    PubMed  PubMed Central  Article  Google Scholar 

  85. Stevens AA, Tappon SC, Garg A, Fair DA (2012) Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLoS One 7(1):e30468. doi:10.1371/journal.pone.0030468

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Takahashi N, Kawamura M, Shiota J, Kasahata N, Hirayama K (1997) Pure topographic disorientation due to right retrosplenial lesion. Neurology 49(2):464–469

    CAS  PubMed  Article  Google Scholar 

  87. Tyler LK, Marslen-Wilson W (2008) Fronto-temporal brain systems supporting spoken language comprehension. Philos Trans R Soc Lond B Biol Sci 363(1493):1037–1054. doi:10.1098/rstb.2007.2158

    PubMed  Article  Google Scholar 

  88. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. doi:10.1006/nimg.2001.0978

    CAS  PubMed  Article  Google Scholar 

  89. Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT (1987) Retrosplenial amnesia. Brain 110(Pt 6):1631–1646

    PubMed  Article  Google Scholar 

  90. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011

    PubMed  Article  CAS  Google Scholar 

  91. van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cogn Sci 17(12):683–696. doi:10.1016/j.tics.2013.09.012

    PubMed  Article  Google Scholar 

  92. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29(23):7619–7624. doi:10.1523/JNEUROSCI.1443-09.2009

    PubMed  Article  CAS  Google Scholar 

  93. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1):431–438. doi:10.1016/j.neuroimage.2011.07.044

    PubMed  Article  Google Scholar 

  94. Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10(11):792–802. doi:10.1038/nrn2733

    CAS  PubMed  Article  Google Scholar 

  95. Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. doi:10.3389/fnhum.2015.00386

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442. doi:10.1038/30918

    CAS  PubMed  Article  Google Scholar 

  97. Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD (2013) Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci 16(3):349–356. doi:10.1038/nn.3315

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Wegman J, Janzen G (2011) Neural encoding of objects relevant for navigation and resting state correlations with navigational ability. J Cogn Neurosci 23(12):3841–3854. doi:10.1162/jocn_a_00081

    PubMed  Article  Google Scholar 

  99. Wegman J, Fonteijn HM, van Ekert J, Tyborowska A, Jansen C, Janzen G (2014) Gray and white matter correlates of navigational ability in humans. Hum Brain Mapp 35(6):2561–2572. doi:10.1002/hbm.22349

    PubMed  Article  Google Scholar 

  100. Wolbers T, Hegarty M (2010) What determines our navigational abilities? Trends Cogn Sci 14(3):138–146. doi:10.1016/j.tics.2010.01.001

    PubMed  Article  Google Scholar 

  101. Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 8(7):e68910. doi:10.1371/journal.pone.0068910

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665–670. doi:10.1038/nmeth.1635

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Zeng LL, Wang D, Fox MD, Sabuncu M, Hu D, Ge M, Buckner RL, Liu H (2014) Neurobiological basis of head motion in brain imaging. Proc Natl Acad Sci USA. doi:10.1073/pnas.1317424111

    Google Scholar 

  104. Zhen Z, Yang Z, Huang L, Kong XZ, Wang X, Dang X, Huang Y, Song Y, Liu J (2015) Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas. Neuroimage 113:13–25. doi:10.1016/j.neuroimage.2015.03.010

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (31230031, 31221003, and 31470055), the National Basic Research Program of China (2014CB846103), National Social Science Foundation of China (13&ZD073, 14ZDB160) and Changjiang Scholars Programme of China.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Zhen Kong or Jia Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, XZ., Wang, X., Pu, Y. et al. Human navigation network: the intrinsic functional organization and behavioral relevance. Brain Struct Funct 222, 749–764 (2017). https://doi.org/10.1007/s00429-016-1243-8

Download citation

Keywords

  • Spatial navigation
  • Functional connectivity
  • Individual differences
  • Connectomics