Skip to main content

Mechanisms of memory storage in a model perirhinal network

Abstract

The perirhinal cortex supports recognition and associative memory. Prior unit recording studies revealed that recognition memory involves a reduced responsiveness of perirhinal cells to familiar stimuli whereas associative memory formation is linked to increasing perirhinal responses to paired stimuli. Both effects are thought to depend on perirhinal plasticity but it is unclear how the same network could support these opposite forms of plasticity. However, a recent study showed that when neocortical inputs are repeatedly activated, depression or potentiation could develop, depending on the extent to which the stimulated neocortical activity recruited intrinsic longitudinal connections. We developed a biophysically realistic perirhinal model that reproduced these phenomena and used it to investigate perirhinal mechanisms of associative memory. These analyzes revealed that associative plasticity is critically dependent on a specific subset of neurons, termed conjunctive cells (CCs). When the model network was trained with spatially distributed but coincident neocortical inputs, CCs acquired excitatory responses to the paired inputs and conveyed them to distributed perirhinal sites via longitudinal projections. CC ablation during recall abolished expression of the associative memory. However, CC ablation during training did not prevent memory formation because new CCs emerged, revealing that competitive synaptic interactions governs the formation of CC assemblies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M (2012) A neural circuit for spatial summation in visual cortex. Nature 490:226–231

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Aggleton JP, Hunt PR, Rawlins JN (1986) The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav Brain Res 19:133–146

    CAS  PubMed  Article  Google Scholar 

  3. Akrami A, Liu Y, Treves A, Jagadeesh B (2009) Converging neuronal activity in inferior temporal cortex during the classification of morphed stimuli. Cereb Cortex 19:760–776

    PubMed  Article  Google Scholar 

  4. Ball JM, Hummos A, Nair SS (2012) Role of sensory input distribution and intrinsic connectivity in lateral amygdala during auditory fear conditioning. Neuroscience 224:249–267

    CAS  PubMed  Article  Google Scholar 

  5. Bang SJ, Brown TH (2009) Muscarinic receptors in perirhinal cortex control trace conditioning. J Neurosci 29:4346–4350

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Barker GRI, Bashir ZI, Brown MW, Warburton EC (2006a) A temporally distinct role for group I and group II metabotropic glutamate receptors in object recognition memory. Learn Mem 13:178–186

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Barker GRI, Warburton EC, Koder T, Dolman NP, More JCA, Aggleton JP, Bashir ZI, Auberson YP, Jane DE, Brown MW (2006b) The different effects on recognition memory of perirhinal kainate and NMDA glutamate receptor antagonism: implications for underlying plasticity mechanisms. J Neurosci 26:3561–3566

    CAS  PubMed  Article  Google Scholar 

  8. Beggs JM, Kairiss EW (1994) Electrophysiology and morphology of neurons in rat perirhinal cortex. Brain Res 665:18–32

    CAS  PubMed  Article  Google Scholar 

  9. Biella G, Uva L, de Curtis M (2001) Network activity evoked by neocortical stimulation in area 36 of the guinea pig perirhinal cortex. J Neurophysiol 86:164–172

    CAS  PubMed  Google Scholar 

  10. Biella G, Uva L, de Curtis M (2002) Propagation of neuronal activity along the neocortical-perirhinal-entorhinal pathway in the guinea pig. J Neurosci 22:9972–9979

    CAS  PubMed  Google Scholar 

  11. Bilkey DK (1996) Long-term potentiation in the in vitro perirhinal cortex displays associative properties. Brain Res 733:297–300

    CAS  PubMed  Article  Google Scholar 

  12. Bogacz R, Brown MW (2003) An anti-Hebbian model of familiarity discrimination in the perirhinal cortex. Neurocomputing 52:1–6

    Article  Google Scholar 

  13. Brown MW, Wilson FAW, Riches IP (1987) Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Res 409:158–167

    CAS  PubMed  Article  Google Scholar 

  14. Buckley MJ, Gaffan D (1998) Learning and transfer of object-reward associations and the role of the perirhinal cortex. Behav Neurosci 112:15–23

    CAS  PubMed  Article  Google Scholar 

  15. Burwell RD (2000) The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci 911:25–42

    CAS  PubMed  Article  Google Scholar 

  16. Burwell RD, Amaral DG (1998a) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205

    CAS  PubMed  Article  Google Scholar 

  17. Burwell RD, Amaral DG (1998b) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391:293–321

    CAS  PubMed  Article  Google Scholar 

  18. Burwell RD, Witter MP, Amaral DG (1995) Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus 5:390–408

    CAS  PubMed  Article  Google Scholar 

  19. Bush PC, Sejnowski TJ (1993) Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods 46:159–166

    CAS  PubMed  Article  Google Scholar 

  20. Cho K, Bashir ZI (2002) Cooperation between mglu receptors: a depressing mechanism? Trends Neurosci 25:405–411

    CAS  PubMed  Article  Google Scholar 

  21. Cho K, Kemp N, Noel J, Aggleton JP, Brown MW, Bashir ZI (2000) A new form of long-term depression in the perirhinal cortex. Nat Neurosci 3:150–156

    CAS  PubMed  Article  Google Scholar 

  22. Cho K, Aggleton JP, Brown MW, Bashir ZI (2001) An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J Physiol 532:459–466

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Cho K, Brown MW, Bashir ZI (2002) Mechanisms and physiological role of enhancement of mGlu5 receptor function by group II mGlu receptor activation in rat perirhinal cortex. J Physiol 540:895–906

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Collins DR, Lang EJ, Paré D (1999) Spontaneous activity of the perirhinal cortex in behaving cats. Neuroscience 89:1025–1039

    CAS  PubMed  Article  Google Scholar 

  25. Cousens G, Otto TA (1998) Induction and transient suppression of longterm potentiation in the peri- and postrhinal cortices following theta-related stimulation of hippocampal field CA1. Brain Res 780:95–101

    CAS  PubMed  Article  Google Scholar 

  26. Cowell RA (2012) Computational models of perirhinal cortex function. Hippocampus 22:1952–1964

    PubMed  Article  Google Scholar 

  27. Cowell RA, Bussey TJ, Saksida LM (2006) Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. J Neurosci 26:12186–12197

    CAS  PubMed  Article  Google Scholar 

  28. Cowell RA, Bussey TJ, Saksida LM (2010) Functional dissociations within the ventral object processing pathway: cognitive modules or a hierarchical continuum? J Cogn Neurosci 22:2460–2479

    PubMed  Article  Google Scholar 

  29. D’Antuono M, Biagini G, Tancredi V, Avoli M (2001) Electrophysiology of regular firing cells in the rat perirhinal cortex. Hippocampus 11:662–672

    PubMed  Article  Google Scholar 

  30. De Curtis M, Pare D (2004) The rhinal cortices: a wall of inhibition between the neocortex and hippocampus. Prog Neurobiol 74:101–110

    PubMed  Article  Google Scholar 

  31. Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220:168–190

    CAS  PubMed  Article  Google Scholar 

  32. Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A (2000) Properties and role of ih in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol 83:2562–2579

    CAS  PubMed  Google Scholar 

  33. Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97:1566–1587

    PubMed  Article  Google Scholar 

  34. Eichenbaum H, Schoenbaum G, Young B, Bunsey M (1996) Functional organization of the hippocampal memory system. Proc Natl Acad Sci USA 93:13500–13507

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Fahy FL, Riches IP, Brown MW (1993) Neuronal activity related to visual recognition memory: long-term memory and the encoding of recency and familiarity information in the primate anterior and medial inferior temporal cortex and rhinal cortex. Exp Brain Res 96:457–472

    CAS  PubMed  Article  Google Scholar 

  36. Faulkner B, Brown TH (1999) Morphology and physiology of neurons in the rat perirhinal-lateral amygdala area. J Comp Neurol 411:613–642

    CAS  PubMed  Article  Google Scholar 

  37. Fino E, Packer AM, Yuste R (2013) The logic of inhibitory connectivity in the neocortex. Neuroscientist 19:228–237

    PubMed  Article  Google Scholar 

  38. Fransen E, Alonso AA, Hasselmo ME (2002) Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J Neurosci 22:1081–1097

    CAS  PubMed  Google Scholar 

  39. Fransén E, Alonso AA, Dickson CT, Magistretti J, Hasselmo ME (2004) Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons. Hippocampus 14:368–384

    PubMed  Article  CAS  Google Scholar 

  40. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA (2006) Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49:735–746

    PubMed  Article  CAS  Google Scholar 

  41. Furtak SC, Wei S-M, Agster KL, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17:709–722

    PubMed  Article  Google Scholar 

  42. Gaffan D, Murray EA (1992) Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-h intertrial intervals and fail at matching to sample despite double sample presentations. Behav Neurosci 106:30–38

    CAS  PubMed  Article  Google Scholar 

  43. Goulet S, Murray EA (2001) Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex. Behav Neurosci 115:271–284

    CAS  PubMed  Article  Google Scholar 

  44. Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    CAS  PubMed  Article  Google Scholar 

  45. Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB (2008) Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus 18:411–424

    PubMed  PubMed Central  Article  Google Scholar 

  46. Higuchi S, Miyashita Y (1996) Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. Proc Natl Acad Sci USA 93:739–743

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Hummos A, Franklin CC, Nair SS (2014) Intrinsic mechanisms stabilize encoding and retrieval circuits differentially in a hippocampal network model. Hippocampus 24:1430–1448

    PubMed  Article  Google Scholar 

  48. Insausti R, Amaral DG, Cowan WM (1987) The entorhinal cortex of the monkey: II Cortical afferents. J Comp Neurol 264:356–395

    CAS  PubMed  Article  Google Scholar 

  49. Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, Collingridge GL, Cho K (2008) Metabotropic glutamate receptor-mediated ltd involves two interacting Ca2+ sensors, NCS-1 and PICK1. Neuron 60:1095–1111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31:277–287

    PubMed  Article  Google Scholar 

  51. Kim D, Pare D, Nair SS (2013) Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J Neurosci 33:14354–14358

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Kim D, Samarth P, Feng F, Pare D, Nair S (2015) Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: a biophysical modeling study. Brain Struct Funct 1–20

  53. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Leonard BW, Amaral DG, Squire LR, Zola-Morgan S (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15:5367–5659

    Google Scholar 

  55. Li L, Miller EK, Desimone R (1993) The representation of stimulus familiarity in anterior inferior temporal cortex. J Neurophysiol 69:1918–1929

    CAS  PubMed  Google Scholar 

  56. Lujan R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P (1996) Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci 8:1488–1500

    CAS  PubMed  Article  Google Scholar 

  57. Ma Y, Hu H, Berrebi AS, Mathers PH, Agmon A (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J Neurosci 26(19):5069–5082

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Ma Y, Hu H, Agmon A (2012) Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype. J Neurosci 32:983–988

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Marcaggi P, Mutoh H, Dimitrov D, Beato M, Knöpfel T (2009) Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Proc Natl Acad Sci USA 106(27):11388–11393

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    CAS  PubMed  Article  Google Scholar 

  61. Martina M, Royer S, Pare D (2001a) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895

    CAS  PubMed  Google Scholar 

  62. Martina M, Royer S, Pare D (2001b) Propagation of neocortical inputs in the perirhinal cortex. J Neurosci 21:2878–2888

    CAS  PubMed  Google Scholar 

  63. Massey PV, Bhabra G, Cho K, Brown MW, Bashir ZI (2001) Activation of muscarinic receptors induces protein synthesis-dependent long-lasting depression in the perirhinal cortex. Eur J Neurosci 14:145–152

    CAS  PubMed  Article  Google Scholar 

  64. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24:7821–7828

    CAS  PubMed  Article  Google Scholar 

  65. Massey PV, Phythian D, Narduzzo K, Warburton EC, Brown MW, Bashir ZI (2008) Learning-specific changes in long-term depression in adult perirhinal cortex. J Neurosci 28:7548–7554

    CAS  PubMed  Article  Google Scholar 

  66. McCaffery B, Cho K, Bortolotto ZA, Aggleton JP, Brown MW, Conquet F, Collingridge GL, Bashir ZI (1999) Synaptic depression induced by pharmacological activation of metabotropic glutamate receptors in the perirhinal cortex in vitro. Neuroscience 93:977–984

    CAS  PubMed  Article  Google Scholar 

  67. McGann JP, Moyer JR Jr, Brown TH (2001) Predominance of late-spiking neurons in layer VI of rat perirhinal cortex. J Neurosci 21:4969–4976

    CAS  PubMed  Google Scholar 

  68. Messinger A, Squire LR, Zola SM, Albright TD (2001) Neuronal representations of stimulus associations develop in the temporal lobe during learning. Proc Natl Acad Sci USA 98:12239–12244

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Meunier M, Bachevalier J, Mishkin M, Murray EA (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432

    CAS  PubMed  Google Scholar 

  70. Meunier M, Hadfield W, Bachevalier J, Murray EA (1996) Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys. J Neurophysiol 75:1190–1205

    CAS  PubMed  Google Scholar 

  71. Migliore M (2003) On the integration of subthreshold inputs from perforant path and schaffer collaterals in hippocampal CA1 pyramidal neurons. J Comput Neurosci 14:185–192

    PubMed  Article  Google Scholar 

  72. Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157–1168

    CAS  PubMed  Google Scholar 

  73. Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an a-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5–15

    CAS  PubMed  Article  Google Scholar 

  74. Miller EK, Li L, Desimone R (1993) Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 13:1460–1478

    CAS  PubMed  Google Scholar 

  75. Moyer JR, McNay EC, Brown TH (2002) Three classes of pyramidal neurons in layer V of rat perirhinal cortex. Hippocampus 12:218–234

    PubMed  Article  Google Scholar 

  76. Murray EA, Mishkin M (1986) Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. J Neurosci 6:1991–2003

    CAS  PubMed  Google Scholar 

  77. Murray EA, Gaffan EA, Mishkin M (1993) Neural substrate of visual stimulus-stimulus association in rhesus monkey. J Neurosci 13:4549–4561

    CAS  PubMed  Google Scholar 

  78. Murray EA, Graham KS, Gaffan D (2005) Perirhinal cortex and its neighbours in the medial temporal lobe: contributions to memory and perception. Q J Exp Psychol B 58:378–396

    PubMed  Article  Google Scholar 

  79. Naya Y, Yoshida M, Miyashita Y (2003) Forward processing of long-term associative memory in monkey. J Neurosci 23:2861–2871

    CAS  PubMed  Google Scholar 

  80. Parker A, Gaffan D (1998) Lesions of the primate rhinal cortex cause deficits in flavour-visual associative memory. Behav Brain Res 93:99–105

    CAS  PubMed  Article  Google Scholar 

  81. Pelletier JG, Pare D (2002) Uniform range of conduction times from the lateral amygdala to distributed perirhinal sites. J Neurophysiol 87:1213–1221

    PubMed  Google Scholar 

  82. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16:1068–1076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Riches IP, Wilson FA, Brown MW (1991) The effects of visual stimulation and memory on neurons of the hippocampal formation and the neighboring parahippocampal gyrus and inferior temporal cortex of the primate. J Neurosci 11:1763–1779

    CAS  PubMed  Google Scholar 

  84. Rolls ET, Cahusac P, Feigenbaum JD, Miyashita Y (1993) Responses of single neurons in the hippocampus of the macaque related to recognition memory. Exp Brain Res 93:299–306

    CAS  PubMed  Article  Google Scholar 

  85. Room P, Groenewegen HJ (1986) Connections of the parahippocampal cortex. I. Cortical afferents. J Comp Neurol 251:415–450

    CAS  PubMed  Article  Google Scholar 

  86. Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100 % of neocortical GABAergic neurons. Dev Neurobiol 71:45–61

    PubMed  PubMed Central  Article  Google Scholar 

  87. Seoane A, Massey PV, Keen H, Bashir ZI, Brown MW (2009) L-type voltage-dependent calcium channel antagonists impair perirhinal long-term recognition memory and plasticity processes. J Neurosci 29:9534–9544

    CAS  PubMed  Article  Google Scholar 

  88. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A, Abe T, Nakanishi S, Mizuno N (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    CAS  PubMed  Google Scholar 

  89. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA 99:10831–10836

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Silberberg G, Wu C, Markram H (2004) Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J Physiol 556:19–27

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Sobotka S, Ringo JL (1993) Investigation of long-term recognition and association memory in unit responses from inferotemporal cortex. Exp Brain Res 96:28–38

    CAS  PubMed  Article  Google Scholar 

  92. Sohal V, Hasselmo ME (2000) A model for experience-dependent changes in the responses of inferotemporal neurons. Network Comp Neural Syst 11:169–190

    CAS  Article  Google Scholar 

  93. Storm JF (1988) Temporal integration by a slowly inactivating K+ current in hippocampal neurons. Nature 336:379–381

    CAS  PubMed  Article  Google Scholar 

  94. Suzuki WA, Amaral DG (1994) Perihinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533

    CAS  PubMed  Article  Google Scholar 

  95. Suzuki WA, Zola-Morgan S, Squire LR, Amaral DG (1993) Lesions of the perirhinal and parahippocampal co.rtices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. J Neurosci 13:2430–2451

    CAS  PubMed  Google Scholar 

  96. Unal G, Apergis-Schoute J, Pare D (2012) Associative properties of the perirhinal network. Cereb Cortex 22:1318–1332

    PubMed  PubMed Central  Article  Google Scholar 

  97. Unal G, Pare JF, Smith Y, Pare D (2013) Differential connectivity of short- vs long-range extrinsic and intrinsic cortical inputs to perirhinal neurons. J Comp Neurol 521:2538–2550

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Uva L, Grüschke S, Biella G, Curtis Md, Witter MP (2004) Cytoarchitectonic characterization of the parahippocampal region of the guinea pig. J Comp Neurol 474:289–303

    PubMed  Article  Google Scholar 

  99. Wan H, Warburton EC, Zhu XO, Koder TJ, Park Y, Aggleton JP, Cho K, Bashir ZI, Brown MW (2004) Benzodiazepine impairment of perirhinal cortical plasticity and recognition memory. Eur J Neurosci 20:2214–2224

    CAS  PubMed  Article  Google Scholar 

  100. Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GRI, Aggleton JP, Bashir ZI, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996

    CAS  PubMed  Article  Google Scholar 

  101. Witter MP, Room P, Groenewegen HJ, Lohman AHM (1986) Connections of the parahippocampal cortex in the cat. V. Intrinsic connections; comments on input/output connections with the hippocampus. J Comp Neurol 252:78–94

    CAS  PubMed  Article  Google Scholar 

  102. Witter MP, Wouterlood FG, Naber PA, Van Haeften T (2000) Anatomical organization of the parahippocampal-hippocampal network. Ann Ny Acad Sci 911:1–24

    CAS  PubMed  Article  Google Scholar 

  103. Xiang JZ, Brown MW (1998) Differential neuronal encoding of novelty, familiarity and recency in regions of the anterior temporal lobe. Neuropharmacology 37:657–676

    CAS  PubMed  Article  Google Scholar 

  104. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, Miyamichi K, Luo L, Dan Y (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–665

    CAS  PubMed  Article  Google Scholar 

  105. Ziakopoulos Z, Tillett CW, Brown MW, Bashir ZI (1999) Input- and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro. Neuroscience 92:459–472

    CAS  PubMed  Article  Google Scholar 

  106. Ziakopoulos Z, Brown MW, Bashir ZI (2000) GABAB receptors mediate frequency-dependent depression of excitatory potentials in rat perirhinal cortex in vitro. Eur J Neurosci 12:803–809

    CAS  PubMed  Article  Google Scholar 

  107. Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA (1989) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Grants from the National Institute of Mental Health (MH073610 and MH-098738 to DP and MH087755 to SSN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satish S. Nair.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

P. Samarth and J. M. Ball both authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2522 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Samarth, P., Ball, J.M., Unal, G. et al. Mechanisms of memory storage in a model perirhinal network. Brain Struct Funct 222, 183–200 (2017). https://doi.org/10.1007/s00429-016-1210-4

Download citation

Keywords

  • Associative memory
  • Computational model
  • Synaptic plasticity
  • Memory retrieval
  • Perirhinal
  • Entorhinal