Brain Structure and Function

, Volume 222, Issue 1, pp 71–81 | Cite as

Anatomic characterization of prelemniscal radiations by probabilistic tractography: implications in Parkinson’s disease

  • María Guadalupe García-Gomar
  • Julian Soto-Abraham
  • Francisco Velasco-Campos
  • Luis ConchaEmail author
Original Article


To characterize the anatomical connectivity of the prelemniscal radiations (Raprl), a white matter region within the posterior subthalamic area (PSA) that is an effective neurosurgical target for treating motor symptoms of Parkinson’s disease (PD). Diffusion-weighted images were acquired from twelve healthy subjects using a 3T scanner. Constrained spherical deconvolution, a method that allows the distinction of crossing fibers within a voxel, was used to compute track-density images with sufficient resolution to accurately delineate distinct PSA regions and probabilistic tractography of Raprl in both hemispheres. Raprl connectivity was reproducible across all subjects and showed fibers traversing through this region towards primary and supplementary motor cortices, the orbitofrontal cortex, ventrolateral thalamus, and the globus pallidus, cerebellum and dorsal brainstem. All brain regions reached by Raprl fibers are part of motor circuits involved in the pathophysiology of PD; while these fiber systems converge at the level of the PSA, they can be spatially segregated. Fibers of distinct and specific motor control networks are identified within Raprl. The description of this anatomical crossroad suggests that, in the future, tractography could allow deep brain stimulation or lesional therapies in white matter targets according to individual patient’s symptoms.


Parkinson’s disease Prelemnsical radiations Constrained spherical deconvolution Track-density images Probabilistic tractography 



The authors are extremely grateful to participants for their cooperation given. We thank Dr. Laura Chávez Macias and Dr. Monica Madrazo for research assistance, and Dr. Dorothy Pless for proofreading and editing. We thank Dr. Erick Pasaye Alcaraz, Juan Ortiz and the personnel of the Magnetic Resonance Unit for technical assistance. MGGG is a doctoral student from Programa de Doctorado en Ciencias Biomédicas at the Universidad Nacional Autónoma de México (UNAM), and received fellowship 275789 from the National Council of Science and Technology in Mexico (CONACyT). This work was supported by the National Council of Science and Technology in Mexico (CONACyT) from Grant 0114218-2009.

Compliance with ethical standards

Conflict of interest

The authors do not have any conflicts of interest.

Supplementary material

429_2016_1201_MOESM1_ESM.png (686 kb)
Supplementary Fig. 1. Target regions for virtual dissection of Raprl connectivity. Cortical and subcortical regions were automatically segmented using freesurfer version 5.3, according to the Desikan-Killiany Atlas (Neuroimage 2006) on the subject’s high-resolution T1-weighted volume. Segmentations were then transformed to the subject’s native DWI space by applying a non-linear transformation, and are shown overlaid on the average DWI. OFC: Orbitofrontal cortex; GP: Globus pallidus; PMC: Primary motor cortex; PFC: Prefrontal cortex; SMA: Supplementary motor area. (PNG 686 kb)
429_2016_1201_MOESM2_ESM.docx (9 kb)
Supplementary material 2 (DOCX 9 kb)


  1. Andy OJ, Jurko MF (1965) Alteration in Parkinso tremor during electrode insertion. Confin Neurol 26:378–381PubMedGoogle Scholar
  2. Andy OJ, Jurko MF, Sias FR (1963) Subthalamotomy in treatment of Parkinsonian tremor. J Neurosurg 20:260–270CrossRefGoogle Scholar
  3. Aravamuthan BR, Muthusamy KA, Stein JF, Aziz TZ, Johansen-Berg H (2007) Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. NeuroImage 37:694–705. doi: 10.1016/j.neuroimage.2007.05.050 CrossRefPubMedGoogle Scholar
  4. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219CrossRefPubMedGoogle Scholar
  5. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088. doi: 10.1002/mrm.10609 CrossRefPubMedGoogle Scholar
  6. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–406CrossRefPubMedGoogle Scholar
  7. Bertrand C, Hardy J, Molina-Negro P, Martínez N (1969) Optimum physiological target for the arrest of tremor. In: Third Symposium on Parkinson’s Disease Edinb Livingstone ES 251–259Google Scholar
  8. Blomstedt P, Sandvik U, Fytagoridis A, Tisch S (2009) The posterior subthalamic area in the treatment of movement disorders: past, present and future. Neurosurgery 64(6):1029–1038. doi: 10.1227/01.NEU.0000345643.69486.BC CrossRefPubMedGoogle Scholar
  9. Blomstedt P, Sandvik U, Linder J, Fredricks A, Forsgren L, Hariz MI (2011) Deep brain stimulation of the subthalamic nucleus versus the zona incerta in the treatment of essential tremor. Acta Neurochir (Wien) 153:2329–2335. doi: 10.1007/s00701-011-1157-4 CrossRefGoogle Scholar
  10. Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270. doi: 10.1007/s11065-010-9143-9 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA 107:8452–8456. doi: 10.1073/pnas.1000496107 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Calamante F, Tournier J-D, Jackson GD, Connelly A (2010) Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage 53:1233–1243. doi: 10.1016/j.neuroimage.2010.07.024 CrossRefPubMedGoogle Scholar
  13. Carrillo-Ruiz JD, Velasco F, Jimènez F, Castro G, Velasco AL, Hernández JA, Ceballos J, Velasco M (2008) Bilateral electrical stimulation of prelemniscal radiations in the treatment of advanced Parkinson’s disease. Neurosurgery 62:347–357. doi: 10.1227/01.neu.0000316001.03765.e8 (discussion 357–359) CrossRefPubMedGoogle Scholar
  14. Castro G, Carrillo-Ruiz JD, Salcido V, Soto J, García-Gomar MG, Velasco AL, Velasco F (2015) Optimizing prelemniscal radiations as a target for motor symptoms in Parkinson’s disease treatment. Stereotact Funct Neurosurg 93:282–291CrossRefPubMedGoogle Scholar
  15. Chen MC, Ferrari L, Sacchet MD, Foland-Ross LC, Qiu MH, Gotlib IH, Fuller PM, Arrigoni E, Lu J (2015) Identification of a direct GABAergic pallidocortical pathway in rodents. Eur J Neurosci 41(6):748–759. doi: 10.1111/ejn.12822 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Coenen VA, Allert N, Mädler B (2011a) A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir (Wien) 153:1579–1585. doi: 10.1007/s00701-011-1036-z (discussion 1585) CrossRefGoogle Scholar
  17. Coenen VA, Mädler B, Schiffbauer H, Urbach H, Allert N (2011b) Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery 68:1069–1075. doi: 10.1227/NEU.0b013e31820a1a20 (discussion 1075–1076) PubMedGoogle Scholar
  18. Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B (2014) Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery 75:657–669. doi: 10.1227/NEU.0000000000000540 (discussion 669–670) CrossRefPubMedGoogle Scholar
  19. Contarino FM, Bour LJ, Verhagen R, Lourens MAJ, de Bie RMA, Munekhof P, Schuurman PR (2014) Directional steering: a novel approach to deep brain stimulation. Neurology 83:1163–1169. doi: 10.1212/WNL.0000000000000823 CrossRefPubMedGoogle Scholar
  20. Den Dunnen WFA, Staal MJ (2005) Anatomical alterations of the subthalamic nucleus in relation to age: a postmortem study. Mov Disord 20:893–898. doi: 10.1002/mds.20417 CrossRefGoogle Scholar
  21. Derogatis LR, Rickels K, Rock AF (1976) The SCL-90 and the MMPI: a step in the validation of a new self-report scale. Br J Psychiatry J Ment Sci 128:280–289CrossRefGoogle Scholar
  22. Dirnberger G, Jahanshahi M (2013) Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol 7:193–224CrossRefPubMedGoogle Scholar
  23. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829CrossRefPubMedGoogle Scholar
  24. Forstmann BU, Keuken MC, Jahfari S, Bazin P-L, Neumann J, Schäfer A, Anwander A, Turner R (2012) Cortico-subthalamic white matter tract strength predicts interindividual efficacy in stopping a motor response. NeuroImage 60:370–375. doi: 10.1016/j.neuroimage.2011.12.044 CrossRefPubMedGoogle Scholar
  25. Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, Lozano AM, Hammerstad J, Lyons K, Koller WC, Moeller JR, Eidelberg D (2001) Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 124:1601–1609CrossRefPubMedGoogle Scholar
  26. Gallay MN, Jeanmonod D, Liu J, Morel A (2008) Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct 212:443–463. doi: 10.1007/s00429-007-0170-0 CrossRefPubMedPubMedCentralGoogle Scholar
  27. García-Gomar MG, Concha L, Alcauter S, Soto Abraham J, Carrillo-Ruiz JD, Castro Farfan G, Velasco CF (2013) Probabilistic tractography of the posterior subthalamic area in Parkinson´s disease patients. J Biomed Sci Eng 6:381–390. doi: 10.4236/jbise.2013.63A048 CrossRefGoogle Scholar
  28. Gradinaru V, Murtaza M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Sci NY 324(5925):354–359. doi: 10.1126/science.1167093 CrossRefGoogle Scholar
  29. Hamel W, Fietzek U, Morsnowski A, Schrader B, Herzog J, Weinert D, Pfister G, Müller D, Volkmann J, Deuschl G, Mehdorn HM (2003) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry 74:1036–1046CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hamel W, Herzog J, Kopper F, Pinsker M, Weinert D, Müller D, Krack P, Deuschl G, Mehdorn HM (2007) Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor. Acta Neurochir. (Wien) 149:749–758. doi: 10.1007/s00701-007-1230-1 (discussion 758) CrossRefGoogle Scholar
  31. Haynes WIA, Haber SN (2013) The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci 33:4804–4814. doi: 10.1523/JNEUROSCI.4674-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, Weinert D, Pfister G, Müller D, Mehdorn HM, Deuschl G, Volkmann J (2004) Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord 19:1050–1054. doi: 10.1002/mds.20056 CrossRefPubMedGoogle Scholar
  33. Herzog J, Hamel W, Wenzelburger R, Pötter M, Pinsker MO, Bartussek J, Morsnowski A, Steigerwald F, Deuschl G, Volkmann J (2007) Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain 130:1608–1625. doi: 10.1093/brain/awm077 CrossRefPubMedGoogle Scholar
  34. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493. doi: 10.1038/nn1544 CrossRefPubMedGoogle Scholar
  35. Ito Z (1975) Stimulation and destruction of the prelemniscal radiation or its adjacent area in various extrapyramidal disorders. Confin Neurol 37:41–48CrossRefPubMedGoogle Scholar
  36. Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J (2013) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Map 34:2747–2766. doi: 10.1002/hbm.22099 CrossRefGoogle Scholar
  37. Jiménez F, Velasco F, Velasco M, Brito F, Morel C, Márquez I, Pérez ML (2000) Subthalamic prelemniscal radiation stimulation for the treatment of Parkinson’s disease: electrophysiological characterization of the area. Arch Med Res 31:270–281CrossRefPubMedGoogle Scholar
  38. Jiménez F, Velasco F, Carrillo-Ruiz JD, García L, Madrigal A, Velasco AL, Márquez I (2006) Comparative evaluation of the effects of unilateral lesion versus electrical stimulation of the globus pallidus internus in advanced Parkinson’s disease. Stereotact Funct Neurosurg 84:64–71. doi: 10.1159/000094034 CrossRefPubMedGoogle Scholar
  39. Karimi M, Golchin N, Tabbal SD, Hershey T, Videen TO, Wu J, Usche JWM, Revilla FJ, Hartlein JM, Wernle AR, Mink JW, Perlmutter JS (2008) Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 131:2710–2719. doi: 10.1093/brain/awn179 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kerl HU, Gerigk L, Huck S, Al-Zghloul M, Groden C, Nölte IS (2012) Visualisation of the zona incerta for deep brain stimulation at 3.0 Tesla. Clin Neuroradiol 22:55–68. doi: 10.1007/s00062-012-0136-3 CrossRefPubMedGoogle Scholar
  41. Kerl HU, Gerigk L, Brockmann MA, Huck S, Al-Zghloul M, Groden C, Hauser T, Nagel AM, Nölte IS (2013) Imaging for deep brain stimulation: the zona incerta at 7 Tesla. World J Radiol 5:5–16. doi: 10.4329/wjr.v5.i1.5 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Keuken MC, Bazin P-L, Schäfer A, Neumann J, Turner R, Forstmann BU (2013) Ultra-high 7T MRI of structural age-related changes of the subthalamic nucleus. J Neurosci 33:4896–4900. doi: 10.1523/JNEUROSCI.3241-12.2013 CrossRefPubMedGoogle Scholar
  43. Kitagawa M, Murata J, Uesugi H, Kikuchi S, Saito H, Tashiro K, Sawamura Y (2005) Two-year follow-up of chronic stimulation of the posterior subthalamic white matter for tremor-dominant Parkinson’s disease. Neurosurgery 56:281–289 (discussion 281–289) CrossRefPubMedGoogle Scholar
  44. Kitajima M, Korogi Y, Kakeda S, Moriya J, Ohnari N, Sato T, Hayashida Y, Hirai T, Okuda T, Yamashita Y (2008) Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology 50:675–681. doi: 10.1007/s00234-008-0388-4 CrossRefPubMedGoogle Scholar
  45. Leemans A, Jones DK (2009) The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med 61:1336–1349. doi: 10.1002/mrm.21890 CrossRefPubMedGoogle Scholar
  46. Lindsley DF, Ranf SK, Barton RJ (1972) Corticofugal influences on reticular formation evoked activity in cats. Exp Neurol 34:511–521CrossRefPubMedGoogle Scholar
  47. Massey LA, Miranda MA, Zrinzo L, Al-Helli O, Parkes HG, Thornton JS, So P-W, White MJ, Mancini L, Strand C, Holton JL, Hariz MI, Lees AJ, Revesz T, Yousry TA (2012) High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4 T with histological validation. NeuroImage 59:2035–2044. doi: 10.1016/j.neuroimage.2011.10.016 CrossRefPubMedGoogle Scholar
  48. Milardi D, Gaeta M, Marino S, Arrigo A, Vaccarino G, Mormina E, Rizzo G, Milazzo C, Finocchio G, Baglieri A, Anastasi G, Quartarone A (2014) Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway?. Disord Off J Mov Disord Soc, Mov. doi: 10.1002/mds.25995 Google Scholar
  49. Morris DM, Embleton KV, Parker GJM (2008) Probabilistic fibre tracking: differentiation of connections from chance events. NeuroImage 42:1329–1339. doi: 10.1016/j.neuroimage.2008.06.012 CrossRefPubMedGoogle Scholar
  50. Mundinger F (1965) Stereotactic interventions on the zona incerta for treatment of extrapyramidal motor disturbances. Confin Neurol 26:222–230PubMedGoogle Scholar
  51. Murata J, Kitagawa M, Uesugi H, Saito H, Iwasaki Y, Kikuchi S, Tashiro K, Sawamura Y (2003) Electrical stimulation of the posterior subthalamic area for the treatment of intractable proximal tremor. J Neurosurg 99:708–715. doi: 10.3171/jns.2003.99.4.0708 CrossRefPubMedGoogle Scholar
  52. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  53. Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M (2013) Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 38:3106–3114. doi: 10.1111/ejn.12314 CrossRefPubMedGoogle Scholar
  54. Plaha P, Patel NK, Gill SS (2004) Stimulation of the subthalamic region for essential tremor. J Neurosurg 101:48–54. doi: 10.3171/jns.2004.101.1.0048 CrossRefPubMedGoogle Scholar
  55. Riva-Posse P, Choi KS, Holtzheimer PE, McIntyre CC, Gross RE, Chaturvedi A, Crowell AL, Garlow SJ, Rajendra JK, Mayberg HS (2014) Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol Psychiatry 76:963–969. doi: 10.1016/j.biopsych.2014.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Roebroeck A, Galuske R, Formisano E, Chiry O, Bratzke H, Ronen I, Kim D, Goebel R (2008) High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T. NeuroImage 39:157–168. doi: 10.1016/j.neuroimage.2007.08.015 CrossRefPubMedGoogle Scholar
  57. Sandvik U, Koskinen L-O, Lundquist A, Blomstedt P (2012) Thalamic and subthalamic deep brain stimulation for essential tremor: where is the optimal target? Neurosurgery 70:840–845. doi: 10.1227/NEU.0b013e318236a809 (discussion 845–846) CrossRefPubMedGoogle Scholar
  58. Saunders A, Oldenburg IA, Berezovskii VK, Johnson CA, Kingery ND, Elliott HL, Xie T, Gerfen CR, Sabatini BL (2015) A direct GABAergic output from the basal ganglia to the frontal cortex. Nature 521(7550):85–89. doi: 10.1038/nature14179 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain, 2nd edn. Stuttgart, ThiemeGoogle Scholar
  60. Skinner JE, Lindsley DB (1973) The non-specific mediothalamic-frontocortical sys- tem: its influence in electrocortical activity and behavior. In: Pribram KH, Luria AR (eds) Psychophysiology of frontal lobes. Academic Press, New York, pp 185–236CrossRefGoogle Scholar
  61. Spiegel EA, Wycis HT, Szekely EG, Baird HW, Adams J, Flanagan M (1962) Campotomy. Trans Am Neurol Assoc 87:240–242PubMedGoogle Scholar
  62. Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35:1459–1472. doi: 10.1016/j.neuroimage.2007.02.016 CrossRefPubMedGoogle Scholar
  63. Tournier J-D, Yeh C-H, Calamante F, Cho K-H, Connelly A, Lin C-P (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage 42:617–625. doi: 10.1016/j.neuroimage.2008.05.002 CrossRefPubMedGoogle Scholar
  64. Tournier J-D, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66. doi: 10.1002/ima.22005 CrossRefGoogle Scholar
  65. Velasco F, Velasco M (1979) A reticulothalamic system mediating proprioceptive attention and tremor in man. Neurosurgery 4:30–36CrossRefPubMedGoogle Scholar
  66. Velasco FC, Molina-Negro P, Bertrand C, Hardy J (1972) Further definition of the subthalamic target for arrest of tremor. J Neurosurg 36:184–191. doi: 10.3171/jns.1972.36.2.0184 CrossRefPubMedGoogle Scholar
  67. Velasco M, Velasco F, Maldonado H, Machado JP (1975) Differential effect of thalamic and subthalamic lesions on early and late components of the somatic evoked potentials in man. Electroencephalogr Clin Neurophysiol 39:163–171CrossRefPubMedGoogle Scholar
  68. Velasco F, Velasco M, Ogarrio C, Olvera A (1986) Neglect induced by thalamotomy in humans: a quantitative appraisal of the sensory and motor deficits. Neurosurgery 19:744–751CrossRefPubMedGoogle Scholar
  69. Velasco F, Jiménez F, Pérez ML, Carrillo-Ruiz JD, Velasco AL, Ceballos J, Velasco M (2001) Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson’s disease: an old target revised with new techniques. Neurosurgery 49:293–306 (discussion 306–308) PubMedGoogle Scholar
  70. Velasco F, Velasco M, Jiménez F, Velasco AL, Salin-Pascual R (2005) Neurobiological background for performing surgical intervention in the inferior thalamic peduncle for treatment of major depression disorders. Neurosurgery 57:439–448 (discussion 439–448) CrossRefPubMedGoogle Scholar
  71. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund H-J, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96:269–279. doi: 10.3171/jns.2002.96.2.0269 CrossRefPubMedGoogle Scholar
  72. Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17CrossRefPubMedGoogle Scholar
  73. Wichmann T, Delong MR (2011) Deep-brain stimulation for basal ganglia disorders. Basal Ganglia 1:65–77. doi: 10.1016/j.baga.2011.05.001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaroMéxico
  2. 2.Unit for Stereotactic and Functional Neurosurgery and RadiosurgeryMexico General HospitalMexico CityMexico

Personalised recommendations