Skip to main content
Log in

Transcriptional regulation of mouse hypoglossal motor neuron somatotopic map formation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Somatic motor neurons in the hypoglossal nucleus innervate tongue muscles controlling vital functions such as chewing, swallowing and respiration. Formation of functional hypoglossal nerve circuits depends on the establishment of precise hypoglossal motor neuron maps correlating with specific tongue muscle innervations. Little is known about the molecular mechanisms controlling mammalian hypoglossal motor neuron topographic map formation. Here we show that combinatorial expression of transcription factors Runx1, SCIP and FoxP1 defines separate mouse hypoglossal motor neuron groups with different topological, neurotransmitter and calcium-buffering phenotypes. Runx1 and SCIP are coexpressed in ventromedial hypoglossal motor neurons involved in control of tongue protrusion whereas FoxP1 is expressed in dorsomedial motor neurons associated with tongue retraction. Establishment of separate hypoglossal motor neuron maps depends in part on Runx1-mediated suppression of ventrolateral and dorsomedial motor neuron phenotypes and regulation of FoxP1 expression pattern. These findings suggest that combinatorial actions of Runx1, SCIP and FoxP1 are important for mouse hypoglossal nucleus somatotopic map formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

10N:

Dorsal motor nucleus of vagus

12N:

Hypoglossal nucleus

βGal:

Beta galactosidase

CGRP:

Calcitonin gene related peptide

ENCODE:

Encyclopedia of DNA Elements

HBS:

HEPES-buffered saline

MN:

Motor neuron

PBS:

Phosphate-buffered saline

PNS:

Peripheral nervous system

PV:

Parvalbumin

XGal:

5-Bromo-4-chloro-3-indolyl-β-galactopyranoside

References

  • Aldes LD (1995) Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol 353:89–108

    Article  CAS  PubMed  Google Scholar 

  • Altschuler SM, Bao X, Miselis RR (1994) Dendritic architecture of hypoglossal motor neurons projecting to extrinsic tongue musculature in the rat. J Comp Neurol 342:538–550

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene HB9 in the consolidation of motor neuron identity. Neuron 23:659–674

    Article  CAS  PubMed  Google Scholar 

  • Bruno L, Mazzarella L, Hoogenkamp M, Hertweck A, Cobb BS, Sauer S et al (2009) Runx proteins regulate Foxp3 expression. J Exp Med 206:2329–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang IY, Kim SW, Lee KJ, Yoon SP (2008) Calbindin D-28 k, parvalbumin and calcitonin gene-related peptide immunoreactivity in the canine spinal cord. Anat Histol Embryol 37:446–451

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Broom DC, Liu Y, de Nooij JC, Li Z, Cen C et al (2006) Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49:365–377

    Article  CAS  PubMed  Google Scholar 

  • Chibuzo GA, Cummings JF (1982) An enzyme tracer study of the organization of the somatic motor center for the innervation of different muscles of the tongue: evidence for two sources. J Comp Neurol 205:273–281

    Article  CAS  PubMed  Google Scholar 

  • Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123:477–491

    Article  CAS  PubMed  Google Scholar 

  • Dasen JS, De Camilli A, Wang B, Tucker PW, Jessell TM (2008) Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134:304–316

    Article  CAS  PubMed  Google Scholar 

  • de Souza E, Coveñas R, Yi P, Aguilar LA, Lerma L, Andrade R et al (2008) Mapping of CGRP in the alpaca (Lama pacos) brainstem. J Chem Neuroanat 35:346–355

    Article  PubMed  Google Scholar 

  • Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  CAS  Google Scholar 

  • Francius C, Clotman F (2014) Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 71:813–829

    Article  CAS  PubMed  Google Scholar 

  • Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci 33:409–440

    Article  CAS  PubMed  Google Scholar 

  • Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H et al (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3 + regulatory T cells. Immunity 31:609–620

    Article  CAS  PubMed  Google Scholar 

  • Kramer I, Sigrist M, de Nooij JC, Taniuchi I, Jessell TM, Arber S (2006) A role for Runx1 transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49:379–393

    Article  CAS  PubMed  Google Scholar 

  • Krammer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res 170:533–537

    Article  CAS  PubMed  Google Scholar 

  • Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R et al (2002) The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J 21:3454–3463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis PR, Flumerfelt BA, Shute CCD (1971) The use of cholinesterase techniques to study topographical localization in the hypoglossal nucleus of the rat. J Anat (London) 110:203–213

    CAS  Google Scholar 

  • Lowe AA (1981) The neural regulation of tongue movements. Prog Neurol 15:295–344

    Article  Google Scholar 

  • Lowe AA (1984) Tongue movements-brainstem mechanisms and clinical postulates. Brain Behav Evol 25:128–137

    Article  CAS  PubMed  Google Scholar 

  • Machado CB, Kanning KC, Kreis P, Stevenson D, Crossley M, Nowak M et al (2014) Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons. Development 141:784–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung JR, Goldberg SJ (1999) Organization of motoneurons in the dorsal hypoglossal nucleus that innervate the retrusor muscles of the tongue in the rat. Anat Rec 254:222–230

    Article  CAS  PubMed  Google Scholar 

  • McClung JR, Goldberg SJ (2000) Functional anatomy of the hypoglossal innervated muscles of the rat tongue: a model for elongation and protrusion of the mammalian tongue. Anat Rec 260:378–386

    Article  CAS  PubMed  Google Scholar 

  • Murthy M, Bocking S, Verginelli F, Stifani S (2014) Transcription factor Runx1 inhibits proliferation and promotes developmental maturation in a selected population of inner olfactory nerve layer olfactory ensheathing cells. Gene 540:191–200

    Article  CAS  PubMed  Google Scholar 

  • North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M et al (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126:2563–2575

    CAS  PubMed  Google Scholar 

  • Odutola AB (1976) Cell grouping and Golgi architecture of the hypoglossal nucleus in the rat. Exp Neurol 52:356–371

    Article  CAS  PubMed  Google Scholar 

  • Palmesino E, Rousso DL, Kao T-J, Klar A, Laufer E, Uemura O et al (2010) Foxp1 and Lhx1 Coordinate Motor Neuron Migration with Axon Trajectory Choice by Gating Reelin Signalling. PLoS Biol 8(8):e1000446

    Article  PubMed  PubMed Central  Google Scholar 

  • Philippidou P, Walsh CM, Aubin J, Jeannotte L, Dasen JS (2012) Sustained Hox5 gene activity is required for respiratory motor neuron development. Nature Neurosci 15:1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG (2008) Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 59:226–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY (2009) Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 10:1170–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sienkiewicz W, Dudek A, Kaleczyc J, Chrószcz A (2010) Immunohistochemical characterization of neurones in the hypoglossal nucleus of the pig. Anat Histol Embryol 39:152–159

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Goldberg SJ, Shall MS (2005) Phenotype and contractile properties of mammalian tongue muscles innervated by the hypoglossal nerve. Respir Physiol Neurobiol 147:253–262

    Article  CAS  PubMed  Google Scholar 

  • Stifani N, Freitas AR, Liakhovitskaia A, Medvinsky A, Kania A, Stifani S (2008) Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1. Proc Natl Acad Sci USA 105:6451–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sürmeli G, Akay T, Ippolito GC, Tucker PW, Jessell TM (2011) Patterns of spinal sensory-motor connectivity prescribed by a dorsoventral positional template. Cell 147:653–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Theriault FM, Roy P, Stifani S (2004) AML1/RUNX1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proc Natl Acad Sci USA 101:10343–10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theriault FM, Nuthall HN, Dong Z, Lo R, Barnabe-Heider F, Miller FD et al (2005) Role for Runx1 in the proliferation and neuronal differentiation of selected progenitor cells in the mammalian nervous system. J Neurosci 25:2050–2061

    Article  CAS  PubMed  Google Scholar 

  • Uemura-Sumi M, Mizuno N, Nomura S, Iwahori N, Takeuchi Y, Matshushima R (1981) Topographical representation of the hypoglossal nerve branches in the hypoglossal nucleus of the Macaque monkeys. Neurosci Lett 22:31–35

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM et al (2001) Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron 30:399–410

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Hirabayashi M, Ito R, Ozaki S, Aizawa S, Masuda T et al (2015) Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons. Dev Neurobiol 75:1295−1314

    Article  CAS  PubMed  Google Scholar 

  • Zagami CJ, Stifani S (2010) Molecular characterization of the mouse superior lateral parabrachial nucleus through expression of the transcription factor Runx1. PLoS One 5(11):e13944

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zhou W, Yao Z, Wan Y, Cao J, Zhang L et al (2015) Foxp1/2/4 regulate endochondral ossification as a suppressor complex. Dev Biol 398:242–252

    Article  CAS  PubMed  Google Scholar 

  • Zhuang S, Zhang Q, Zhuang T, Evans SM, Liang X, Sun Y (2013) Expression of Isl1 during mouse development. Gene Expr Patterns 13:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zusso M, Methot L, Lo R, Grenhalgh AD, David S, Stifani S (2012) Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J Neurosci 32:11285–11298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Silvia Arber for Tau Runx1 mice, Dr. Artur Kania for Hb9 Cre mice, Dr. Jeremy Dasen for anti-SCIP antibodies, and Dr. Jean-Francois Cloutier for microscopy support. We also thank Ye Man Tang and Rita Lo for excellent technical assistance, and Mireille Bouchard-Levasseur and Stephanie Perrino for invaluable help with animal care. X.C. was supported by the National Natural Science Foundation of China (81370029) and the Project of Tianjin Applied Basic and Cutting-edge Technological Research (13JCQNJC10500). A.S.C. was supported by Postdoctoral Fellowship from the Fonds de la Recherche du Québec-Santé. R.D. was supported by CIHR-Vanier Canada Graduate Scholarship. This work was supported by Grants from the Canadian Institutes of Health Research (MOP-123500) and ALS Canada (Bridge Funding) to S.S. who is a James McGill Professor of McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Stifani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

X. Chen and J. W. Wang contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 204 kb)

Supplementary material 2 (PDF 10105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, J.W., Salin-Cantegrel, A. et al. Transcriptional regulation of mouse hypoglossal motor neuron somatotopic map formation. Brain Struct Funct 221, 4187–4202 (2016). https://doi.org/10.1007/s00429-015-1160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1160-2

Keywords

Navigation