Skip to main content
Log in

Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Aversive early life experiences in humans have been shown to result in deficits in the function of the prefrontal cortex (PFC). In an effort to elucidate possible neurobiological mechanisms involved, we investigated in rats, the effects of a mildly aversive early experience on PFC structure and function. The early experience involved exposure of rat pups during postnatal days (PND) 10–13 to a T-maze in which they search for their mother, but upon finding her are prohibited contact with her, thus being denied the expected reward (DER). We found that the DER experience resulted in adulthood in impaired PFC function, as assessed by two PFC-dependent behavioral tests [attention set-shifting task (ASST) and fear extinction]. In the ASST, DER animals showed deficits specifically in the intra-dimensional reversal shifts and a lower activation—as determined by c-Fos immunohistochemistry—of the medial orbital cortex (MO), a PFC subregion involved in this aspect of the task. Furthermore, the DER experience resulted in decreased glutamatergic neuron and dendritic spine density in the MO and infralimbic cortex (IL) in the adult brain. The decreased neuronal density was detected as early as PND12 and was accompanied by increased micro- and astroglia-density in the MO/IL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ASST:

Attention set-shifting task

CTR:

Control animals

DAB:

3,3′-Diaminobenzidine

DER:

Animals denied the expected reward

GAD67:

Glutamate decarboxylase, MW 67 kDa

GFAP:

Glial fibrillary acidic protein

Iba-1:

Ionized calcium-binding adapter molecule 1

IL:

Infralimbic cortex

MO:

Medial orbital cortex

NDS:

Normal donkey serum

NGS:

Normal goat serum

PBS:

Phosphate-buffered saline

PFC:

Prefrontal cortex

PND:

Postnatal day

PrL:

Prelimbic cortex

RER:

Animals receiving the expected reward

roCg1:

Rostral part of area 1 of cingulate cortex

roVLO:

Rostral part of ventral lateral orbital cortex

SEM:

Standard error of the mean

References

  • Aksić M, Radonjić NV, Aleksić D, Jevtić G, Marković B, Petronijević N et al (2013) Long-term effects of the maternal deprivation on the volume and number of neurons in the rat neocortex and hippocampus. Acta Neurobiol Exp (Wars) 73:394–403

    Google Scholar 

  • Baarendse PJ, Counotte DS, O’Donnell P, Vanderschuren LJ (2013) Early social experience is critical for the development of cognitive control and dopamine modulation of prefrontal cortex function. Neuropsychopharmacology 38:1485–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barad M (2005) Fear extinction in rodents: basic insight to clinical promise. Curr Opin Neurobiol 15:710–715

    Article  CAS  PubMed  Google Scholar 

  • Barros VG, Duhalde-Vega M, Caltana L, Brusco A, Antonelli MC (2006) Astrocyte-neuron vulnerability to prenatal stress in the adult rat brain. J Neurosci Res 83:787–800

    Article  CAS  PubMed  Google Scholar 

  • Baudin A, Blot K, Verney C, Estevez L, Santamaria J, Gressens P et al (2012) Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol Learn Mem 98:207–214

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Taylor JB, Cunningham MC (2000) Convergence and plasticity of monoaminergic systems in the medial prefrontal cortex during the postnatal period: implications for the development of psychopathology. Cereb Cortex 10:1014–1027

    Article  CAS  PubMed  Google Scholar 

  • Bielau H, Steiner J, Mawrin C, Trübner K, Brisch R, Meyer-Lotz G et al (2007) Dysregulation of GABAergic neurotransmission in mood disorders: a postmortem study. Ann N Y Acad Sci 1096:157–169

    Article  CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    CAS  PubMed  Google Scholar 

  • Black YD, Maclaren FR, Naydenov AV, Carlezon WA Jr, Baxter MG, Konradi C (2006) Altered attention and prefrontal cortex gene expression in rats after binge-like exposure to cocaine during adolescence. J Neurosci 26:9656–9665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaze J, Roth TL (2013) Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex. Int J Dev Neurosci 31:804–810

    Article  CAS  PubMed  Google Scholar 

  • Bock J, Gruss M, Becker S, Braun K (2005) Experience-induced changes of dendritic spine densities in the prefrontal and sensory cortex: correlation with developmental time windows. Cereb Cortex 15:802–808

    Article  PubMed  Google Scholar 

  • Bock J, Murmu RP, Ferdman N, Leshem M, Braun K (2008) Refinement of dendritic and synaptic networks in the rodent anterior cingulate and orbitofrontal cortex: critical impact of early and late social experience. Dev Neurobiol 68:685–695

    Article  PubMed  Google Scholar 

  • Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N et al (2005) Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 35:791–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Chocyk A, Bobula B, Dudys D, Przyborowska A, Majcher-Maślanka I, Hess G, Wędzony K (2013) Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur J Neurosci 38:2089–2107

    Article  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    CAS  PubMed  Google Scholar 

  • Corwin JV, Fussinger M, Meyer RC, King VR, Reep RL (1994) Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats. Behav Brain Res 61:79–86

    Article  CAS  PubMed  Google Scholar 

  • Crone EA, Ridderinkhof KR, Worm M, Somsen RJ, van der Molen MW (2004) Switching between spatial stimulus-response mappings: a developmental study of cognitive flexibility. Dev Sci 7:443–455

    Article  PubMed  Google Scholar 

  • de Bruin JP, Sànchez-Santed F, Heinsbroek RP, Donker A, Postmes P (1994) A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Res 652:323–333

    Article  PubMed  Google Scholar 

  • Diamantopoulou A, Raftogianni A, Stamatakis A, Alikaridis F, Oitzl MS, Stylianopoulou F (2012) Denial of reward in the neonate shapes sociability and serotonergic activity in the adult rat. PLoS One 7:e33793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamantopoulou A, Raftogianni A, Stamatakis A, Tzanoulinou S, Oitzl MS, Stylianopoulou F (2013) Denial or receipt of expected reward through maternal contact during the neonatal period differentially affect the development of the rat amygdala and program its function in adulthood in a sex-dimorphic way. Psychoneuroendocrinology 38:1757–1771

    Article  PubMed  Google Scholar 

  • Diz-Chaves Y, Pernía O, Carrero P, Garcia-Segura LM (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflamm 9:71

    Article  CAS  Google Scholar 

  • Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci 367:2475–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    Article  CAS  PubMed  Google Scholar 

  • Garey L (2010) When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat 217:324–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 251:90–107

    Article  CAS  PubMed  Google Scholar 

  • Goldberg E, Bougakov D (2005) Neuropsychologic assessment of frontal lobe dysfunction. Psychiatr Clin N Am 28:567–580

    Article  Google Scholar 

  • Green MK, Rani CS, Joshi A, Soto-Piña AE, Martinez PA, Frazer A et al (2011) Prenatal stress induces long term stress vulnerability, compromising stress response systems in the brain and impairing extinction of conditioned fear after adult stress. Neuroscience 192:438–451

    Article  CAS  PubMed  Google Scholar 

  • Gregg JR, Herring NR, Naydenov AV, Hanlin RP, Konradi C (2009) Downregulation of oligodendrocyte transcripts is associated with impaired prefrontal cortex function in rats. Schizophr Res 113:277–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackman DA, Farah MJ (2009) Socioeconomic status and the developing brain. Trends Cogn Sci 13:65–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmeke C, Ovtscharoff W Jr, Poeggel G, Braun K (2008) Imbalance of immunohistochemically characterized interneuron populations in the adolescent and adult rodent medial prefrontal cortex after repeated exposure to neonatal separation stress. Neuroscience 152:18–28

    Article  CAS  PubMed  Google Scholar 

  • Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41:289–294

    Article  CAS  PubMed  Google Scholar 

  • Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94

    Article  CAS  PubMed  Google Scholar 

  • Katsumoto A, Lu H, Miranda AS, Ransohoff RM (2014) Ontogeny and functions of central nervous system macrophages. J Immunol 193:2615–26121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehrer C, Maziashvili N, Dugladze T, Gloveli T (2008) Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT (2009) Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci 21:1106–1115

    Article  PubMed  Google Scholar 

  • Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R (2012) Experience and the developing prefrontal cortex. Proc Natl Acad Sci USA 2:17186–17193

    Article  Google Scholar 

  • Krolow R, Noschang C, Weis SN, Pettenuzzo LF, Huffell AP, Arcego DM et al (2012) Isolation stress during the prepubertal period in rats induces long-lasting neurochemical changes in the prefrontal cortex. Neurochem Res 37:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M (2014) Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol 14:97–102

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xue X, Shao S, Shao F, Wang W (2013) Cognitive, emotional and neurochemical effects of repeated maternal separation in adolescent rats. Brain Res 1518:82–90

    Article  CAS  PubMed  Google Scholar 

  • Llorente R, Gallardo ML, Berzal AL, Prada C, Garcia-Segura LM, Viveros MP (2009) Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells. Int J Dev Neurosci 27:233–241

    Article  CAS  PubMed  Google Scholar 

  • Logue SF, Gould TJ (2014) The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacol Biochem Behav 123:45–54

    Article  CAS  PubMed  Google Scholar 

  • Luoni A, Berry A, Calabrese F, Capoccia S, Bellisario V, Gass P et al (2014) Delayed BDNF alterations in the prefrontal cortex of rats exposed to prenatal stress: preventive effect of lurasidone treatment during adolescence. Eur Neuropsychopharmacol 24:986–995

    Article  CAS  PubMed  Google Scholar 

  • Marco EM, Valero M, de la Serna O, Aisa B, Borcel E, Ramirez MJ, Viveros MP (2013) Maternal deprivation effects on brain plasticity and recognition memory in adolescent male and female rats. Neuropharmacology 68:223–231

    Article  CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • Mychasiuk R, Gibb R, Kolb B (2012) Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. Synapse 66:308–314

    Article  CAS  PubMed  Google Scholar 

  • Noble KG, Norman MF, Farah MJ (2005) Neurocognitive correlates of socioeconomic status in kindergarten children. Dev Sci 8:74–87

    Article  PubMed  Google Scholar 

  • Noschang C, Krolow R, Arcego DM, Toniazzo AP, Huffell AP, Dalmaz C (2012) Neonatal handling affects learning, reversal learning and antioxidant enzymes activities in a sex-specific manner in rats. Int J Dev Neurosci 30:285–291

    Article  CAS  PubMed  Google Scholar 

  • Panagiotaropoulos T, Diamantopoulou A, Stamatakis A, Dimitropoulou M, Stylianopoulou F (2009) Learning of a T-maze by rat pups when contact with the mother is either permitted or denied. Neurobiol Learn Mem 91:2–12

    Article  PubMed  Google Scholar 

  • Pascual R, Zamora-León SP, Valero-Cabré A (2006) Effects of postweaning social isolation and re-socialization on the expression of vasoactive intestinal peptide (VIP) and dendritic development in the medial prefrontal cortex of the rat. Acta Neurobiol Exp (Wars) 66:7–14

    Google Scholar 

  • Passetti F, Chudasama Y, Robbins TW (2002) The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb Cortex 12:1254–1268

    Article  PubMed  Google Scholar 

  • Paxinos G, Wattson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  • Pechtel P, Pizzagalli DA (2011) Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology 214:55–70

    Article  CAS  PubMed  Google Scholar 

  • Petit TL, LeBoutillier JC, Gregorio A, Libstug H (1988) The pattern of dendritic development in the cerebral cortex of the rat. Brain Res 469:209–219

    Article  CAS  PubMed  Google Scholar 

  • Raftogianni A, Stamatakis A, Diamantopoulou A, Kollia AM, Stylianopoulou F (2014) Effects of an early experience of reward through maternal contact or its denial on the dopaminergic system of the rat brain. Neuroscience 269:11–20

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra R, Subramanian T (2011) Atlas of the neonatal rat brain. CRC Press, Boca Raton

    Book  Google Scholar 

  • Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T et al (2015) The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 300:141–154

    Article  PubMed  Google Scholar 

  • Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165:429–442

    Article  PubMed  PubMed Central  Google Scholar 

  • Ślusarczyk J, Trojan E, Głombik K, Budziszewska B, Kubera M, Lasoń W et al (2015) Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci 9:82

    PubMed  PubMed Central  Google Scholar 

  • Stamatakis A, Diamantopoulou A, Panagiotaropoulos T, Raftogianni A, Stylianopoulou F (2013) Effects of an early experience involving training in a T-maze under either denial or receipt of expected reward through maternal contact. Front Endocrinol (Lausanne) 4:178

    Google Scholar 

  • Swerdlow NR, Light GA, Trim RS, Breier MR, Hines SR, Powell SB (2013) Forebrain gene expression predicts deficits in sensorimotor gating after isolation rearing in male rats. Behav Brain Res 257:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebartz van Elst L, Maier S, Fangmeier T, Endres D, Mueller GT, Nickel K et al (2014) Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry 19:1314–1325

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Samson JA (2013) Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry 170:1114–1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomalski P, Johnson MH (2010) The effects of early adversity on the adult and developing brain. Curr Opin Psychiatry 23:233–238

    Article  PubMed  Google Scholar 

  • Toth I, Neumann ID, Slattery DA (2012) Central administration of oxytocin receptor ligands affects cued fear extinction in rats and mice in a timepoint-dependent manner. Psychopharmacology 223:149–158

    Article  CAS  PubMed  Google Scholar 

  • Van De Werd HJ, Uylings HB (2008) The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study. Brain Struct Funct 21:387–401

    Article  Google Scholar 

  • van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P et al (2010) Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry 68:832–838

    Article  PubMed  Google Scholar 

  • van Harmelen AL, van Tol MJ, Dalgleish T, van der Wee NJ, Veltman DJ, Aleman A et al (2014) Hypoactive medial prefrontal cortex functioning in adults reporting childhood emotional maltreatment. Soc Cogn Affect Neurosci 9:2026–2033

    Article  PubMed  PubMed Central  Google Scholar 

  • Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497–518

    Article  CAS  PubMed  Google Scholar 

  • Ventura R, Coccurello R, Andolina D, Latagliata EC, Zanettini C, Lampis V et al (2013) Postnatal aversive experience impairs sensitivity to natural rewards and increases susceptibility to negative events in adult life. Cereb Cortex 23:1606–1617

    Article  PubMed  Google Scholar 

  • Wall VL, Fischer EK, Bland ST (2012) Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav 107:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter S, Dieckmann M, Schwabe K (2009) Dopamine in the prefrontal cortex regulates rats behavioral flexibility to changing reward value. Behav Brain Res 198:206–213

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Holsboer F, Almeida OF (2008) Neuronal actions of glucocorticoids: focus on depression. J Steroid Biochem Mol Biol 108:300–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Xie X, Fan Y, Zhang J, Jiang W, Wu X et al (2015) Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment. Sci Rep 5:9513

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Konstantina Nikolakaki for her technical assistance in the immunohistochemical and immunofluorescence experiments. This work has been supported by the John S. Latsis Public Benefit Foundation (#12020). The sole responsibility for the content lies with its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Stamatakis.

Ethics declarations

Conflict of interest

No potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamatakis, A., Manatos, V., Kalpachidou, T. et al. Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat. Brain Struct Funct 221, 4141–4157 (2016). https://doi.org/10.1007/s00429-015-1154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1154-0

Keywords

Navigation