Skip to main content

Hippocampal size is related to short-term true and false memory, and right fusiform size is related to long-term true and false memory

Abstract

There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ashtari M, Avants B, Cyckowski L, Cervellione KL, Roofeh D, Cook P, Gee J, Sevy S, Kumra S (2011) Medial temporal structures and memory functions in adolescents with heavy cannabis use. J Psychiatr Res 45(8):1055–1066. doi:10.1016/j.jpsychires.2011.01.004

    PubMed  PubMed Central  Article  Google Scholar 

  2. Baym CL, Gonsalves BD (2010) Comparison of neural activity that leads to true memories, false memories, and forgetting: an fMRI study of the misinformation effect. Cogn Affect Behav Neurosci 10(3):339–348. doi:10.3758/CABN.10.3.339

    PubMed  Article  Google Scholar 

  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  4. Cabeza R, Rao SM, Wagner AD, Mayer AR, Schacter DL (2001) Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc Natl Acad Sci USA 98(8):4805–4810. doi:10.1073/pnas.081082698081082698

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Chantôme M, Perruchet P, Hasboun D, Dormont D, Sahel M, Sourour N, Zouaoui A, Marsault C, Duyme M (1999) Is there a negative correlation between explicit memory and hippocampal volume? Neuroimage 10(5):589–595. doi:10.1006/nimg.1999.0486

    PubMed  Article  Google Scholar 

  6. Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997) Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging 18(2):131–138. doi:10.1016/S0197-4580(97)00001-8

    CAS  PubMed  Article  Google Scholar 

  7. de Toledo-Morrell L, Dickerson B, Sullivan MP, Spanovic C, Wilson R, Bennett DA (2000) Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer’s disease. Hippocampus 10(2):136–142. doi:10.1002/(SICI)1098-1063(2000)10:2<136:AID-HIPO2>3.0.CO;2-J

    PubMed  Article  Google Scholar 

  8. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980. doi:10.1016/j.neuroimage.2006.01.021

    PubMed  Article  Google Scholar 

  9. Dickey CC, McCarley RW, Voglmaier MM, Niznikiewicz MA, Seidman LJ, Frumin M, Toner S, Demeo S, Shenton ME (2003) A MRI study of fusiform gyrus in schizotypal personality disorder. Schizophr Res 64(1):35–39 (pii S0920996402005297)

    PubMed  PubMed Central  Article  Google Scholar 

  10. Docherty AR, Hagler DJ Jr, Panizzon MS, Neale MC, Eyler LT, Fennema-Notestine C, Franz CE, Jak A, Lyons MJ, Rinker DA, Thompson WK, Tsuang MT, Dale AM, Kremen WS (2015) Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability? Neuroimage 106:154–160. doi:10.1016/j.neuroimage.2014.11.040

    PubMed  Article  Google Scholar 

  11. Edelson M, Sharot T, Dolan RJ, Dudai Y (2011) Following the crowd: brain substrates of long-term memory conformity. Science 333(6038):108–111. doi:10.1126/science.1203557

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Edelson MG, Dudai Y, Dolan RJ, Sharot T (2014) Brain substrates of recovery from misleading influence. J Neurosci 34(23):7744–7753. doi:10.1523/JNEUROSCI.4720-13.2014

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Fischl B (2012) FreeSurfer. Neuroimage 62(2):774–781. doi:10.1016/j.neuroimage.2012.01.021

    PubMed  PubMed Central  Article  Google Scholar 

  14. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355. doi:10.1016/S0896-6273(02)00569

    CAS  PubMed  Article  Google Scholar 

  15. Foster JK, Meikle A, Goodson G, Mayes AR, Howard M, Sunram SI, Cezayirli E, Roberts N (1999) The hippocampus and delayed recall: bigger is not necessarily better? Memory 7(5–6):715–732. doi:10.1080/096582199387823

    CAS  PubMed  Article  Google Scholar 

  16. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130. doi:10.1038/nrn1607

    CAS  PubMed  Article  Google Scholar 

  17. Frye RE, Liederman J, Malmberg B, McLean J, Strickland D, Beauchamp MS (2010) Surface area accounts for the relation of gray matter volume to reading-related skills and history of dyslexia. Cereb Cortex 20(11):2625–2635. doi:10.1093/cercor/bhq010

    PubMed  PubMed Central  Article  Google Scholar 

  18. Garoff RJ, Slotnick SD, Schacter DL (2005) The neural origins of specific and general memory: the role of the fusiform cortex. Neuropsychologia 43(6):847–859. doi:10.1016/j.neuropsychologia.2004.09.014

    PubMed  Article  Google Scholar 

  19. Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (1999) Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects. Nat Neurosci 2(6):568–573. doi:10.1038/9224

    CAS  PubMed  Article  Google Scholar 

  20. Gauthier I, Skudlarski P, Gore JC, Anderson AW (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci 3(2):191–197. doi:10.1038/72140

    CAS  PubMed  Article  Google Scholar 

  21. Gimenez M, Junque C, Vendrell P, Caldu X, Narberhaus A, Bargallo N, Falcon C, Botet F, Mercader JM (2005) Hippocampal functional magnetic resonance imaging during a face-name learning task in adolescents with antecedents of prematurity. Neuroimage 25(2):561–569. doi:10.1016/j.neuroimage.2004.10.046

    PubMed  Article  Google Scholar 

  22. Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57(8):769–775 (pii yoa9447b)

    CAS  PubMed  Article  Google Scholar 

  23. Hudson AJ, Grace GM (2000) Misidentification syndromes related to face specific area in the fusiform gyrus. J Neurol Neurosurg Psychiatry 69(5):645–648. doi:10.1136/jnnp.69.5.645

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–4311

    CAS  PubMed  Google Scholar 

  25. Karanian JM, Slotnick SD (2014) False memory for context activates the parahippocampal cortex. Cogn Neurosci 5(3–4):186–192. doi:10.1080/17588928.2014.938035

    PubMed  Article  Google Scholar 

  26. Kirwan CB, Bayley PJ, Galvan VV, Squire LR (2008) Detailed recollection of remote autobiographical memory after damage to the medial temporal lobe. Proc Natl Acad Sci USA 105(7):2676–2680. doi:10.1073/pnas.0712155105

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Kohler S, Black SE, Sinden M, Szekely C, Kidron D, Parker JL, Foster JK, Moscovitch M, Winocour G, Szalai JP, Bronskill MJ (1998) Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer’s disease. Neuropsychologia 36(9):901–914 (pii S0028393298000177)

    CAS  PubMed  Article  Google Scholar 

  28. Lee HW, Hong SB, Seo DW, Tae WS, Hong SC (2000) Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology 54(4):849–854. doi:10.1212/wnl.54.4.849

    CAS  PubMed  Article  Google Scholar 

  29. Loftus EF (2005) Planting misinformation in the human mind: a 30-year investigation of the malleability of memory. Learn Mem 12(4):361–366. doi:10.1101/lm.94705

    PubMed  Article  Google Scholar 

  30. Mcclelland JL, Mcnaughton BL, Oreilly RC (1995) Why there are complementary learning-systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102(3):419–457. doi:10.1037/0033-295x.102.3.419

    CAS  PubMed  Article  Google Scholar 

  31. Molnar K, Keri S (2014) Bigger is better and worse: on the intricate relationship between hippocampal size and memory. Neuropsychologia 56:73–78. doi:10.1016/j.neuropsychologia.2014.01.001

    PubMed  Article  Google Scholar 

  32. Nadel L, Hardt O (2011) Update on memory systems and processes. Neuropsychopharmacology 36(1):251–273. doi:10.1038/npp.2010.169

    PubMed  Article  Google Scholar 

  33. Nestor PG, Onitsuka T, Gurrera RJ, Niznikiewicz M, Frumin M, Shenton ME, McCarley RW (2007) Dissociable contributions of MRI volume reductions of superior temporal and fusiform gyri to symptoms and neuropsychology in schizophrenia. Schizophr Res 91(1–3):103–106. doi:10.1016/j.schres.2006.11.025

    PubMed  PubMed Central  Article  Google Scholar 

  34. Okado Y, Stark C (2003) Neural processing associated with true and false memory retrieval. Cogn Affect Behav Neurosci 3(4):323–334. doi:10.3758/cabn.3.4.323

    PubMed  Article  Google Scholar 

  35. Okado Y, Stark CE (2005) Neural activity during encoding predicts false memories created by misinformation. Learn Mem 12(1):3–11. doi:10.1101/lm.87605

    PubMed  PubMed Central  Article  Google Scholar 

  36. Onitsuka T, Shenton ME, Kasai K, Nestor PG, Toner SK, Kikinis R, Jolesz FA, McCarley RW (2003) Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia. Arch Gen Psychiatry 60(4):349–355. doi:10.1001/archpsyc.60.4.34960/4/349

    PubMed  Article  Google Scholar 

  37. Onitsuka T, Niznikiewicz MA, Spencer KM, Frumin M, Kuroki N, Lucia LC, Shenton ME, McCarley RW (2006) Functional and structural deficits in brain regions subserving face perception in schizophrenia. Am J Psychiatry 163(3):455–462. doi:10.1176/appi.ajp.163.3.455

    PubMed  PubMed Central  Article  Google Scholar 

  38. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19(11):2728–2735. doi:10.1093/cercor/bhp026

    PubMed  PubMed Central  Article  Google Scholar 

  39. Patihis L, Frenda SJ, LePort AK, Petersen N, Nichols RM, Stark CE, McGaugh JL, Loftus EF (2013) False memories in highly superior autobiographical memory individuals. Proc Natl Acad Sci USA 110(52):20947–20952. doi:10.1073/pnas.1314373110

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Paz-Alonso PM, Ghetti S, Ramsay I, Solomon M, Yoon J, Carter CS, Ragland JD (2013) Semantic processes leading to true and false memory formation in schizophrenia. Schizophr Res 147(2–3):320–325. doi:10.1016/j.schres.2013.04.007

    PubMed  PubMed Central  Article  Google Scholar 

  41. Peelen MV, Downing PE (2007) The neural basis of visual body perception. Nat Rev Neurosci 8(8):636–648. doi:10.1038/nrn2195

    CAS  PubMed  Article  Google Scholar 

  42. Pohlack ST, Meyer P, Cacciaglia R, Liebscher C, Ridder S, Flor H (2014) Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Struct Funct 219(1):255–267. doi:10.1007/s00429-012-0497-z

    PubMed  Article  Google Scholar 

  43. Powell HW, Richardson MP, Symms MR, Boulby PA, Thompson PJ, Duncan JS, Koepp MJ (2007) Reorganization of verbal and nonverbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia 48(8):1512–1525. doi:10.1111/j.1528-1167.2007.01053.x

    PubMed  PubMed Central  Article  Google Scholar 

  44. Putcha D, Brickhouse M, O’Keefe K, Sullivan C, Rentz D, Marshall G, Dickerson B, Sperling R (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci 31(48):17680–17688. doi:10.1523/JNEUROSCI.4740-11.2011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10(10):724–735. doi:10.1038/nrn2719

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341(6144):387–391. doi:10.1126/science.1239073

    CAS  PubMed  Article  Google Scholar 

  47. Sandstrom CK, Krishnan S, Slavin MJ, Tran TT, Doraiswamy PM, Petrella JR (2006) Hippocampal atrophy confounds template-based functional MR imaging measures of hippocampal activation in patients with mild cognitive impairment. AJNR Am J Neuroradiol 27(8):1622–1627 (pii 27/8/1622)

    CAS  PubMed  Google Scholar 

  48. Saygin ZM, Osher DE, Koldewyn K, Reynolds G, Gabrieli JD, Saxe RR (2012) Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat Neurosci 15(2):321–327. doi:10.1038/nn.3001

    CAS  Article  Google Scholar 

  49. Schacter DL, Guerin SA, St Jacques PL (2011) Memory distortion: an adaptive perspective. Trends Cogn Sci 15(10):467–474. doi:10.1016/j.tics.2011.08.004

    PubMed  PubMed Central  Article  Google Scholar 

  50. Schnack HG, van Haren NE, Brouwer RM, Evans A, Durston S, Boomsma DI, Kahn RS, Hulshoff Pol HE (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25(6):1608–1617. doi:10.1093/cercor/bht357

    PubMed  Article  Google Scholar 

  51. Simons JS, Koutstaal W, Prince S, Wagner AD, Schacter DL (2003) Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage 19(3):613–626 (pii S105381190300096X)

    PubMed  Article  Google Scholar 

  52. Squire LR, van der Horst AS, McDuff SG, Frascino JC, Hopkins RO, Mauldin KN (2010) Role of the hippocampus in remembering the past and imagining the future. Proc Natl Acad Sci USA 107(44):19044–19048. doi:10.1073/pnas.1014391107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Stark CE, Okado Y, Loftus EF (2010) Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms. Learn Mem 17(10):485–488. doi:10.1101/lm.1845710

    PubMed  Article  Google Scholar 

  54. Trontel HG, Duffield TC, Bigler ED, Froehlich A, Prigge MB, Nielsen JA, Cooperrider JR, Cariello AN, Travers BG, Anderson JS, Zielinski BA, Alexander A, Lange N, Lainhart JE (2013) Fusiform correlates of facial memory in autism. Behav Sci Basel 3(3):348–371. doi:10.3390/bs3030348

    PubMed  PubMed Central  Article  Google Scholar 

  55. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, Duggirala R, Glahn DC (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53(3):1135–1146. doi:10.1016/j.neuroimage.2009.12.028

    PubMed  Article  Google Scholar 

  56. Zhu B, Chen C, Loftus EF, He Q, Chen C, Lei X, Lin C, Dong Q (2012) Brief exposure to misinformation can lead to long-term false memories. Appl Cogn Psych 26(2):301–307. doi:10.1002/acp.1825

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31571132), the Fundamental Research Funds for the Central Universities (2013YB27), and the 111 Project of the Ministry of Education of China (B07008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Yoko Okado and Craig Stark for sharing their slides with us and for their valuable input.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bi Zhu or Elizabeth F. Loftus.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 529 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Chen, C., Loftus, E.F. et al. Hippocampal size is related to short-term true and false memory, and right fusiform size is related to long-term true and false memory. Brain Struct Funct 221, 4045–4057 (2016). https://doi.org/10.1007/s00429-015-1145-1

Download citation

Keywords

  • Individual differences
  • Memory distortions
  • Misinformation
  • MRI