Skip to main content

Advertisement

Log in

Epigenetic stability in the adult mouse cortex under conditions of pharmacologically induced histone acetylation

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Histone acetylation is considered a major epigenetic process that affects brain development and synaptic plasticity, as well as learning and memory. The transcriptional effectors and morphological changes responsible for plasticity as a result of long-term modifications to histone acetylation are not fully understood. To this end, we pharmacologically inhibited histone deacetylation using Trichostatin A in adult (6-month-old) mice and found significant increases in the levels of the acetylated histone marks H3Lys9, H3Lys14 and H4Lys12. High-resolution transcriptome analysis of diverse brain regions uncovered few differences in gene expression between treated and control animals, none of which were plasticity related. Instead, after increased histone acetylation, we detected a large number of novel transcriptionally active regions, which correspond to long non-coding RNAs (lncRNAs). We also surprisingly found no significant changes in dendritic spine plasticity in layers 1 and 2/3 of the visual cortex using long-term in vivo two-photon imaging. Our results indicate that chronic pharmacologically induced histone acetylation can be decoupled from gene expression and instead, may potentially exert a post-transcriptional effect through the differential production of lncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akhtar MW, Raingo J, Nelson ED, Montgomery RL, Olson EN, Kavalali ET, Monteggia LM (2009) Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J Neurosci Off J Soc Neurosci 29:8288–8297

    Article  CAS  Google Scholar 

  • Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP ± mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959

    Article  CAS  PubMed  Google Scholar 

  • Allfrey V, Faulkner R, Mirsky A (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:9

    Article  Google Scholar 

  • Ayoub A, Oh S, Xie Y, Leng J, Cotney J, Dominguez M, Noonan J, Rakic P (2011) Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci USA 108:6

    Article  Google Scholar 

  • Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, Lynch G, Greene RW, Wood MA (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 36:1545–1556

    Article  CAS  Google Scholar 

  • Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JW, Marshall DF, Echeverria M (2008) Intronic noncoding RNAs and splicing. Trends Plant Sci 13:335–342

    Article  CAS  PubMed  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Rossi S, Napoli I, Mercaldo V, Lacoux C, Ferrari F, Ciotti MT, De Chiara V, Prosperetti C, Maccarrone M, Fezza F, Calabresi P, Bernardi G, Bagni C (2007) The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum. J Neurosci Off J Soc Neurosci 27:8885–8892

    Article  CAS  Google Scholar 

  • Cotney J, Leng J, Oh S, DeMare LE, Reilly SK, Gerstein MB, Noonan JP (2012) Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb. Genome Res 22:1069–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P (2003) Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 116:10

    Article  Google Scholar 

  • Dai J, Hyland EM, Yuan DS, Huang H, Bader JS, Boeke JD (2008) Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 134:1066–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly K, Shirazi-Beechey S (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25:13

    Article  Google Scholar 

  • Drew PJ, Shih AY, Driscoll JD, Knutsen PM, Blinder P, Davalos D, Akassoglou K, Tsai PS, Kleinfeld D (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fass DM, Reis SA, Ghosh B, Hennig KM, Joseph NF, Zhao WN, Nieland TJ, Guan JS, Kuhnle CE, Tang W, Barker DD, Mazitschek R, Schreiber SL, Tsai LH, Haggarty SJ (2013) Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 64:81–96

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20:1470–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foti SB, Chou A, Moll AD, Roskams AJ (2013) HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci Off J Int Soc Dev Neurosci 31:434–447

    Article  CAS  Google Scholar 

  • Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65:35–43

    Article  CAS  PubMed  Google Scholar 

  • Glaser K, Staver M, Waring J, Stender J, Ulrich R, Davidsen S (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:13

    Google Scholar 

  • Goodrich J, Kugel J (2006) Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev 7:5

    Article  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haettig J, Stefanko DP, Multani ML, Figueroa DX, McQuown SC, Wood MA (2011) HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem 18:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavalali ET, Nelson ED, Monteggia LM (2011) Role of MeCP2, DNA methylation, and HDACs in regulating synapse function. J Neurodev Disord 3:250–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenstra TL, Benschop JJ, Kim T, Schulze JM, Brabers NA, Margaritis T, van de Pasch LA, van Heesch SA, Brok MO, Groot Koerkamp MJ, Ko CW, van Leenen D, Sameith K, van Hooff SR, Lijnzaad P, Kemmeren P, Hentrich T, Kobor MS, Buratowski S, Holstege FC (2011) The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42:536–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levenson JM, Sweatt JD (2006) Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci CMLS 63:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Atalaya JP, Ito S, Valor LM, Benito E, Barco A (2013) Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition. Nucleic Acids Res 41:8072–8084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano T, Fraser P (2009) Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome Off J Int Mamm Genome Soc 20:557–562

    Article  CAS  Google Scholar 

  • Nott A, Nitarska J, Veenvliet JV, Schacke S, Derijck AA, Sirko P, Muchardt C, Pasterkamp RJ, Smidt MP, Riccio A (2013) S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proc Natl Acad Sci USA 110:3113–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogo B, Allfrey V, Mirsky A (1966) RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc Natl Acad Sci USA 55:8

    Article  Google Scholar 

  • Putignano E, Lonetti G, Cancedda L , Ratto G, Costa M, Maffei L, Pizzorusso T (2007) Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron 53(5):747–759

    Article  CAS  PubMed  Google Scholar 

  • Stefanko DP, Barrett RM, Ly AR, Reolon GK, Wood MA (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci USA 106:9447–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweatt JD (2009) Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 65:191–197

    Article  PubMed  Google Scholar 

  • Turner BT, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in drosophila polytene nuclei. Cell 69:10

    Article  Google Scholar 

  • Umka J, Mustafa S, ElBeltagy M, Thorpe A, Latif L, Bennett G, Wigmore PM (2010) Valproic acid reduces spatial working memory and cell proliferation in the hippocampus. Neuroscience 166:15–22

    Article  CAS  PubMed  Google Scholar 

  • Yoo DY, Kim W, Nam SM, Kim DW, Chung JY, Choi SY, Yoon YS, Won MH, Hwang IK (2011) Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus. Neurochem Res 36:1850–1857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Steven Reilly for his assistance with the RNA-seq pipeline and data analysis and Dr. Andy Shih for his assistance with teaching the cortical thinning technique. The authors acknowledge the technical assistance of Mariamma Pappy and Shawna Rodriguez. We also thank members of the Rakic lab for critical comments on the manuscript. J.B. is supported by a Natural Sciences and Engineering Research Council of Canada Postgraduate Fellowship 403855-2011 and the Department of Psychology at Yale University. This work was supported by National Institutes of Health Grants DA02399 (to P. R and A. E. A), and the Kavli Institute for Neuroscience at Yale University. We thank Christopher Castaldi, David Harrison, and Kaya Bilguvar for assistance with RNAseq at the Yale Center for Genome Analysis. The Yale University Biomedical High Performance Computing Center is supported by NIH Grant RR19895.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Benoit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benoit, J., Ayoub, A. & Rakic, P. Epigenetic stability in the adult mouse cortex under conditions of pharmacologically induced histone acetylation. Brain Struct Funct 221, 3963–3978 (2016). https://doi.org/10.1007/s00429-015-1138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1138-0

Keywords

Navigation