Abstract
ATP-sensitive potassium (K-ATP) channels have been shown to couple membrane electrical activity to energy metabolism in a variety of cells and are important in several physiological systems. In the brain, K-ATP channels are strongly expressed in the neuronal circuitry. The distributional profile and functional significance of K-ATP channels suggest that they may be involved in stress-induced depression. First, we showed that chronic mild stress (CMS) significantly increased the expression of hippocampal Kir6.2 and Kir6.1 subunits of K-ATP channels. Next, using Kir6.2 knockout (Kir6.2−/−) mice, we presented that Kir6.2 deficiency resulted in antidepressant-like behaviors under non-stress conditions, but aggravated depressive behaviors accompanied by the loss of CA3 neuron and the reduction of brain-derived neurotrophic factor in hippocampus under chronic stress. Finally, we demonstrated that the K-ATP channel opener iptakalim, as well as a classical antidepressant fluoxetine, can reverse CMS-induced depression-related behaviors and counteract the deleterious effects of stress on hippocampus in wild-type mice, but only partially alleviate these symptoms in Kir6.2−/− mice. Collectively, our findings demonstrate that K-ATP channels are involved in the pathogenesis of depression and may be a promising target for the therapy of depression.






Similar content being viewed by others
References
Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS, Cregan SP (2012) The JNK- and AKT/GSK3beta- signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One 7:e46885. doi:10.1371/journal.pone.0046885
Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258. doi:10.1124/pr.111.005108
Bentley SM, Pagalilauan GL, Simpson SA (2014) Major depression. Med Clin North Am 98:981–1005. doi:10.1016/j.mcna.2014.06.013
Bremner JD (1999) Does stress damage the brain? Biol Psychiatry 45:797–805. doi:10.1016/S0006-3223(99)00009-8
Budni J, Gadotti VM, Kaster MP, Santos AR, Rodrigues AL (2007) Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test. Eur J Pharmacol 575:87–93. doi:10.1016/j.ejphar.2007.08.010
Cobb JA et al (2013) Hippocampal volume and total cell numbers in major depressive disorder. J Psychiatr Res 47:299–306. doi:10.1016/j.jpsychires.2012.10.020
Dhingra D, Joshi P, Gupta A, Chhillar R (2012) Possible involvement of monoaminergic neurotransmission in antidepressant-like activity of Emblica officinalis fruits in mice. CNS Neurosci Ther 18:419–425. doi:10.1111/j.1755-5949.2011.00256.x
Gelfo F et al (2012) NPY intraperitoneal injections produce antidepressant-like effects and downregulate BDNF in the rat hypothalamus. CNS Neurosci Ther 18:487–492. doi:10.1111/j.1755-5949.2012.00314.x
Huang Y, Coupland NJ, Lebel RM, Carter R, Seres P, Wilman AH, Malykhin NV (2013) Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study. Biol Psychiatry 74:62–68. doi:10.1016/j.biopsych.2013.01.005
Hutchinson KM et al (2012) Environmental enrichment protects against the effects of chronic stress on cognitive and morphological measures of hippocampal integrity. Neurobiol Learn Mem 97:250–260. doi:10.1016/j.nlm.2012.01.003
Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF (2008) Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 63:1127–1134. doi:10.1016/j.biopsych.2007.11.020
Jacobs BL, Praag H, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5:262–269. doi:10.1038/sj.mp.4000712
Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego
Kaster MP, Budni J, Binfare RW, Santos AR, Rodrigues AL (2007) The inhibition of different types of potassium channels underlies the antidepressant-like effect of adenosine in the mouse forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 31:690–696. doi:10.1016/j.pnpbp.2006.12.018
Klempan TA, Sequeira A, Canetti L, Lalovic A, Ernst C, ffrench-Mullen J, Turecki G (2009) Altered expression of genes involved in ATP biosynthesis and GABAergic neurotransmission in the ventral prefrontal cortex of suicides with and without major depression. Mol Psychiatry 14:175–189. doi:10.1038/sj.mp.4002110
Kong H, Sha LL, Fan Y, Xiao M, Ding JH, Wu J, Hu G (2009) Requirement of AQP4 for antidepressive efficiency of fluoxetine: implication in adult hippocampal neurogenesis. Neuropsychopharmacology 34:1263–1276. doi:10.1038/npp.2008.185
Lee Y, Dawson VL, Dawson TM (2012) Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med 2(10). doi:10.1101/cshperspect.a009324
Lu M, Yang JZ, Geng F, Ding JH, Hu G (2014) Iptakalim confers an antidepressant effect in a chronic mild stress model of depression through regulating neuro-inflammation and neurogenesis. Int J Neuropsychopharmacol 17:1501–1510. doi:10.1017/S1461145714000285
Martin JL, Magistretti PJ, Allaman I (2013) Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes. Curr Drug Targets 14:1308–1321. doi:10.2174/1389450111314110009
Mendez-David I, Hen R, Gardier AM, David DJ (2013) Adult hippocampal neurogenesis: an actor in the antidepressant-like action. Ann Pharm Fr 71:143–149. doi:10.1016/j.pharma.2013.02.006
Miki T et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406. doi:10.1073/pnas.95.18.10402
Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606. doi:10.1038/mp.2012.33
Schloesser RJ et al (2014) Atrophy of pyramidal neurons and increased stress-induced glutamate levels in CA3 following chronic suppression of adult neurogenesis. Brain Struct Funct 219:1139–1148. doi:10.1007/s00429-013-0532-8
Soskin DP, Carl JR, Alpert J, Fava M (2012) Antidepressant effects on emotional temperament: toward a biobehavioral research paradigm for major depressive disorder. CNS Neurosci Ther 18:441–451. doi:10.1111/j.1755-5949.2012.00318.x
Strakowski SM (2012) Bioenergetics for depression: something different for depression. Am J Psychiatry 169:891–893. doi:10.1176/appi.ajp.2012.12050720
Sun XL, Hu G (2010) ATP-sensitive potassium channels: a promising target for protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol 37:243–252. doi:10.1111/j.1440-1681.2009.05190.x
Thomzig A, Laube G, Pruss H, Veh RW (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484:313–330. doi:10.1002/cne.20469
Tinker A, Aziz Q, Thomas A (2014) The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 171:12–23. doi:10.1111/bph.12407
Trouvin JH, Gardier AM, Chanut E, Pages N, Jacquot C (1993) Time course of brain serotonin metabolism after cessation of long-term fluoxetine treatment in the rat. Life Sci 52:PL187–PL192. doi:10.1016/0024-3205(93)90116-K
West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931. doi:10.1038/nrn987
Xie LL, Sun XL, Fan Y, Kong H, Ding JH, Hu G (2009) Aquaporin 4 knockout resists negative regulation of neural cell proliferation by cocaine in mouse hippocampus. Int J Neuropsychopharmacol 12:843–850. doi:10.1017/S1461145709009900
Yamada K, Inagaki N (2005) Neuroprotection by KATP channels. J Mol Cell Cardiol 38:945–949. doi:10.1016/j.yjmcc.2004.11.020
Yang JZ, Huang X, Zhao FF, Xu Q, Hu G (2012) Iptakalim enhances adult mouse hippocampal neurogenesis via opening Kir6.1-composed K-ATP channels expressed in neural stem cells. CNS Neurosci Ther 18:737–744. doi:10.1111/j.1755-5949.2012.00359.x
Zhang S, Zhou F, Ding H-H, Zhou X-Q, Sun X-L, Hu G (2007) ATP-sensitive potassium channel opener iptakalim protects against MPP+ -induced astrocytic apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. J Neurochem 103:569–579. doi:10.1111/j.1471-4159.2007.04775.x
Zhao Y, Spigolon G, Bonny C, Culman J, Vercelli A, Herdegen T (2012) The JNK inhibitor D-JNKI-1 blocks apoptotic JNK signaling in brain mitochondria. Mol Cell Neurosci 49:300–310. doi:10.1016/j.mcn.2011.12.005
Acknowledgments
We are grateful to Drs. Susumu Seino and Takashi Miki, Kobe University, for generous donation of Kir6.2 knockout mice. We thank Mr. Jason Davis (Georgia Regents University) for help with revising the manuscript. This study was supported by the grants from the National Key Basic Research Program of China (No. 2011CB504103), the National Natural Science Foundation of China (No. 81473196), and the National Science and Technology Major Project (No. 2012ZX09304-001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Additional information
Y. Fan and H. Kong contributed equally to this work.
Rights and permissions
About this article
Cite this article
Fan, Y., Kong, H., Ye, X. et al. ATP-sensitive potassium channels: uncovering novel targets for treating depression. Brain Struct Funct 221, 3111–3122 (2016). https://doi.org/10.1007/s00429-015-1090-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00429-015-1090-z


