Brain Structure and Function

, Volume 221, Issue 6, pp 2891–2903 | Cite as

Blindness alters the microstructure of the ventral but not the dorsal visual stream

  • Nina L. Reislev
  • Ron Kupers
  • Hartwig R. Siebner
  • Maurice Ptito
  • Tim B. Dyrby
Original Article


Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.


Tractography White matter microstructure Congenital and late blindness Plasticity Ventral and dorsal visual pathway 



This work was supported by the Lundbeck Foundation (Grant number 3156-50-28667 to R.K. and grant number R59 A5399 [Grant of Excellence on Mapping, Modulation and Modelling the Control of Actions] to H.R.S.) and The Danish Council for Independent Research, Medical Sciences (grant number 09-063392, 0602-01340B to M.P.). We would like to thank all participants for their cooperation willingness and engagement in the experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2015_1078_MOESM1_ESM.pdf (5.3 mb)
Supplementary material can be found online at at the Brain Structure and Function journal. (PDF 5409 kb)


  1. Alexander DC, Hubbard PL, Hall MG et al (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52:1374–1389. doi: 10.1016/j.neuroimage.2010.05.043 CrossRefPubMedGoogle Scholar
  2. Amedi A, Malach R, Hendler T et al (2001) Visuo-haptic object-related activation in the ventral visual pathway. Nat Neurosci 4:324–330CrossRefPubMedGoogle Scholar
  3. Amedi A, Jacobson G, Hendler T et al (2002) Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb Cortex 12:1202–1212. doi: 10.1093/cercor/12.11.1202 CrossRefPubMedGoogle Scholar
  4. Basser PJ, Mattiello J, Lebihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernal B, Altman N (2010) The connectivity of the superior longitudinal fasciculus: a tractography DTI study. Magn Reson Imaging 28:217–225. doi: 10.1016/j.mri.2009.07.008 CrossRefPubMedGoogle Scholar
  6. Bonino D, Ricciardi E, Sani L et al (2008) Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Arch Ital Biol 146:133–146PubMedGoogle Scholar
  7. Bourne JA (2010) Unravelling the development of the visual cortex: implications for plasticity and repair. J Anat 217:449–468. doi: 10.1111/j.1469-7580.2010.01275.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bridge H, Cowey A, Ragge N, Watkins K (2009) Imaging studies in congenital anophthalmia reveal preservation of brain architecture in “visual” cortex. Brain 132:3467–3480. doi: 10.1093/brain/awp279 CrossRefPubMedGoogle Scholar
  9. Burton H (2003) Visual cortex activity in early and late blind people. J Neurosci 23:4005–4011PubMedPubMedCentralGoogle Scholar
  10. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132. doi: 10.1016/j.cortex.2008.05.004 CrossRefPubMedGoogle Scholar
  11. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107. doi: 10.1093/brain/awg203 CrossRefPubMedGoogle Scholar
  12. Clarke S (1994) Modular organization of human extrastriate visual cortex: evidence from cytochrome oxidase pattern in normal and macular degeneration cases. Eur J Neurosci 6:725–736CrossRefPubMedGoogle Scholar
  13. Cohen LG, Weeks RA, Sadato N et al (1999) Period of susceptibility for cross-modal plasticity in the blind. Ann Neurol 45:451–460CrossRefPubMedGoogle Scholar
  14. Collignon O, Dormal G, Albouy G et al (2013) Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136:2769–2783. doi: 10.1093/brain/awt176 CrossRefPubMedGoogle Scholar
  15. Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286. doi: 10.1109/TMI.2008.2004424 CrossRefPubMedGoogle Scholar
  16. Ffytche DH, Blom JD, Catani M (2010) Disorders of visual perception. J Neurol Neurosurg Psychiatry 81:1280–1287. doi: 10.1136/jnnp.2008.171348 CrossRefPubMedGoogle Scholar
  17. Fiehler K, Burke M, Bien S et al (2009) The human dorsal action control system develops in the absence of vision. Cereb Cortex 19:1–12. doi: 10.1093/cercor/bhn067 CrossRefPubMedGoogle Scholar
  18. Horton JC, Hedley-Whyte ET (1984) Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Philos Trans R Soc Lond B Biol Sci 304:255–272. doi: 10.2307/2396915 CrossRefPubMedGoogle Scholar
  19. Jang SH, Hong JH (2012) The anatomical characteristics of superior longitudinal fasciculus I in human brain: diffusion tensor tractography study. Neurosci Lett 506:146–148. doi: 10.1016/j.neulet.2011.10.069 CrossRefPubMedGoogle Scholar
  20. Jellison BJ, Field AS, Medow J et al (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 25:356–369PubMedGoogle Scholar
  21. Jespersen SN, Lundell H, Sønderby CK, Dyrby TB (2013) Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR Biomed 26:1647–1662. doi: 10.1002/nbm.2999 CrossRefPubMedGoogle Scholar
  22. Jespersen SN, Lundell H, Sønderby CK, Dyrby TB (2014) Commentary on “Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientation of order parameter by diffusion MRI with magic-angle spinning of the q-vector”. Front Phys. doi: 10.3389/fphy.2014.00028 Google Scholar
  23. Jeurissen B, Leemans A, Jones DK et al (2011) Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32:461–479. doi: 10.1002/hbm.21032 CrossRefPubMedGoogle Scholar
  24. Jezzard P, Balaban RS (1995) Correction for geometric distortions in echo planar images from B0 field variations. Magn Reson Med 34:65–73CrossRefPubMedGoogle Scholar
  25. Jiang J, Zhu W, Shi F et al (2009) Thick visual cortex in the early blind. J Neurosci 29:2205–2211. doi: 10.1523/JNEUROSCI.5451-08.2009 CrossRefPubMedGoogle Scholar
  26. Karlen SJ, Kahn DM, Krubitzer L (2006) Early blindness results in abnormal corticocortical and thalamocortical connections. Neuroscience 142:843–858. doi: 10.1016/j.neuroscience.2006.06.055 CrossRefPubMedGoogle Scholar
  27. Klaver P, Marcar V, Martin E (2011) Neurodevelopment of the visual system in typically developing children. Prog Brain Res 189:113–136. doi: 10.1016/B978-0-444-53884-0.00021-X CrossRefPubMedGoogle Scholar
  28. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230. doi: 10.1038/nrn3008 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kravitz DJ, Saleem KS, Baker CI et al (2013) The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 17:26–49CrossRefPubMedGoogle Scholar
  30. Kupers R, Ptito M (2011) Insights from darkness: what the study of blindness has taught us about brain structure and function. Prog Brain Res 192:17–31. doi: 10.1016/B978-0-444-53355-5.00002-6 CrossRefPubMedGoogle Scholar
  31. Kupers R, Ptito M (2013) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 13:191–207Google Scholar
  32. Kupers R, Beaulieu-Lefebvre M, Schneider FC et al (2011a) Neural correlates of olfactory processing in congenital blindness. Neuropsychologia 49:2037–2044. doi: 10.1016/j.neuropsychologia.2011.03.033 CrossRefPubMedGoogle Scholar
  33. Kupers R, Pietrini P, Ricciardi E, Ptito M (2011b) The nature of consciousness in the visually deprived brain. Front Psychol. 2:1–14. doi: 10.3389/fpsyg.2011.00019 CrossRefGoogle Scholar
  34. Laemle LK, Strominger NL, Carpenter DO (2006) Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice. Neurosci Lett 396:108–112. doi: 10.1016/j.neulet.2005.11.020 CrossRefPubMedGoogle Scholar
  35. Lasič S, Szczepankiewicz F, Eriksson S et al (2014) Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Front Phys 2:1–14. doi: 10.3389/fphy.2014.00011 Google Scholar
  36. Lawes INC, Barrick TR, Murugam V et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79. doi: 10.1016/j.neuroimage.2007.06.041 CrossRefPubMedGoogle Scholar
  37. Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055. doi: 10.1016/j.neuroimage.2007.12.053 CrossRefPubMedGoogle Scholar
  38. Leemans A, Jeurissen B, Sijbers J, Jones DK (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. International Society for Magnetic Resonance in Medicine, p 3537Google Scholar
  39. Li J, Liu Y, Qin W et al (2013) Age of onset of blindness affects brain anatomical networks constructed using diffusion tensor tractography. Cereb Cortex 23:542–551. doi: 10.1093/cercor/bhs034 CrossRefPubMedGoogle Scholar
  40. Loenneker T, Klaver P, Bucher K et al (2011) Microstructural development: organizational differences of the fiber architecture between children and adults in dorsal and ventral visual streams. Hum Brain Mapp 32:935–946. doi: 10.1002/hbm.21080 CrossRefPubMedGoogle Scholar
  41. Makris N, Kennedy DN, McInerney S et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869. doi: 10.1093/cercor/bhh186 CrossRefPubMedGoogle Scholar
  42. Martino J, Brogna C, Robles SG et al (2010) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46:691–699. doi: 10.1016/j.cortex.2009.07.015 CrossRefPubMedGoogle Scholar
  43. Matteau I, Kupers R, Ricciardi E et al (2010) Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res Bull 82:264–270. doi: 10.1016/j.brainresbull.2010.05.001 CrossRefPubMedGoogle Scholar
  44. Noppeney U (2007) The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev 31:1169–1180. doi: 10.1016/j.neubiorev.2007.04.012 CrossRefPubMedGoogle Scholar
  45. Noppeney U, Friston KJ, Ashburner J et al (2005) Early visual deprivation induces structural plasticity in gray and white matter. Curr Biol 15:R488–R490. doi: 10.1016/j.cub.2005.06.053 CrossRefPubMedGoogle Scholar
  46. Nosarti C, Giouroukou E, Healy E et al (2008) Grey and white matter distribution in very preterm adolescents mediates neurodevelopmental outcome. Brain 131:205–217. doi: 10.1093/brain/awm282 PubMedGoogle Scholar
  47. Park H-J, Lee JD, Kim EY et al (2009) Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage 47:98–106. doi: 10.1016/j.neuroimage.2009.03.076 CrossRefPubMedGoogle Scholar
  48. Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72:26–35. doi: 10.1016/j.bandc.2009.06.002 CrossRefPubMedGoogle Scholar
  49. Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116. doi: 10.1002/cne.902280110 CrossRefPubMedGoogle Scholar
  50. Pietrini P, Furey ML, Ricciardi E et al (2004) Beyond sensory images: object-based representation in the human ventral pathway. Proc Natl Acad Sci USA 101:5658–5663. doi: 10.1073/pnas.0400707101 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Poirier C, Collignon O, Scheiber C et al (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31:279–285. doi: 10.1016/j.neuroimage.2005.11.036 CrossRefPubMedGoogle Scholar
  52. Ptito M, Schneider FCG, Paulson OB, Kupers R (2008) Alterations of the visual pathways in congenital blindness. Exp Brain Res 187:41–49. doi: 10.1007/s00221-008-1273-4 CrossRefPubMedGoogle Scholar
  53. Ptito M, Matteau I, Gjedde A, Kupers R (2009) Recruitment of the middle temporal area by tactile motion in congenital blindness. NeuroReport 20:543–547. doi: 10.1097/WNR.0b013e3283279909 CrossRefPubMedGoogle Scholar
  54. Ptito M, Matteau I, Zhi Wang A et al (2012) Crossmodal recruitment of the ventral visual stream in congenital blindness. Neural Plast. doi: 10.1155/2012/304045 Google Scholar
  55. Qin W, Liu Y, Jiang T, Yu C (2013) The development of visual areas depends differently on visual experience. PLoS ONE 8:e53784. doi: 10.1371/journal.pone.0053784 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182. doi: 10.1002/mrm.10308 CrossRefPubMedGoogle Scholar
  57. Renier LA, Anurova I, De Volder AG et al (2009) Multisensory integration of sounds and vibrotactile stimuli in processing streams for “What” and “Where”. J Neurosci 29:10950–10960. doi: 10.1523/JNEUROSCI.0910-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Renier LA, Anurova I, De Volder AG et al (2010) Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron 68:138–148. doi: 10.1016/j.neuron.2010.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ricciardi E, Vanello N, Sani L et al (2007) The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex 17:2933–2939. doi: 10.1093/cercor/bhm018 CrossRefPubMedGoogle Scholar
  60. Sadato N, Okada T, Honda M, Yonekura Y (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16:389–400. doi: 10.1006/nimg.2002.1111 CrossRefPubMedGoogle Scholar
  61. Schmahmann JD, Pandya DN, Wang R et al (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653. doi: 10.1093/brain/awl359 CrossRefPubMedGoogle Scholar
  62. Schoth F, Burgel U, Dorsch R et al (2006) Diffusion tensor imaging in acquired blind humans. Neurosci Lett 398:178–182. doi: 10.1016/j.neulet.2005.12.088 CrossRefPubMedGoogle Scholar
  63. Shimony JS, Burton H, Epstein AA et al (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 16:1653–1661. doi: 10.1093/cercor/bhj102 CrossRefPubMedGoogle Scholar
  64. Shu N, Li J, Li K et al (2009) Abnormal diffusion of cerebral white matter in early blindness. Hum Brain Mapp 30:220–227. doi: 10.1002/hbm.20507 CrossRefPubMedGoogle Scholar
  65. Strnad L, Peelen MV, Bedny M, Caramazza A (2013) Multivoxel pattern analysis reveals auditory motion information in MT+ of both congenitally blind and sighted individuals. PLoS ONE 8:e63198CrossRefPubMedPubMedCentralGoogle Scholar
  66. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ et al (2011a) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246. doi: 10.1038/nn.2905 CrossRefPubMedGoogle Scholar
  67. Thiebaut De Schotten M, Dominic H, Bizzi A et al (2011b) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54:49–59. doi: 10.1016/j.neuroimage.2010.07.055 CrossRefPubMedGoogle Scholar
  68. Tournier J-D, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556. doi: 10.1002/mrm.22924 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale M, Mansfield RJW (eds) Analysis of visual behaviour, pp 549–586Google Scholar
  70. Vanlierde A, De Volder AG, Wanet-Defalque M-C, Veraart C (2003) Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans. Neuroimage 19:698–709. doi: 10.1016/S1053-8119(03)00153-8 CrossRefPubMedGoogle Scholar
  71. Vos SB, Jones DK, Viergever MA, Leemans A (2011) Partial volume effect as a hidden covariate in DTI analyses. Neuroimage 55:1566–1576. doi: 10.1016/j.neuroimage.2011.01.048 CrossRefPubMedGoogle Scholar
  72. Vos SB, Jones DK, Jeurissen B et al (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. Neuroimage 59:2208–2216. doi: 10.1016/j.neuroimage.2011.09.086 CrossRefPubMedGoogle Scholar
  73. Voss P, Zatorre RJ (2012) Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cereb Cortex 22:2455–2465. doi: 10.1093/cercor/bhr311 CrossRefPubMedGoogle Scholar
  74. Wakana S, Jiang H, Nagae-poetscher LM, et al (2003) Radiology fiber tract based Atlas of radiology, pp 21–29Google Scholar
  75. Wakana S, Caprihan A, Panzenboeck MM et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36:630–644. doi: 10.1016/j.neuroimage.2007.02.049 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wan CY, Wood AG, Chen J et al (2013) The influence of preterm birth on structural alterations of the vision-deprived brain. Cortex 49:1100–1109. doi: 10.1016/j.cortex.2012.03.013 CrossRefPubMedGoogle Scholar
  77. Westin C-F, Maier SE, Mamata H et al (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6:93–108CrossRefPubMedGoogle Scholar
  78. Wheeler-Kingshott CAM, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61:1255–1260. doi: 10.1002/mrm.21965 CrossRefPubMedGoogle Scholar
  79. Yu C, Shu N, Li J et al (2007) Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography. Neuroimage 36:411–417. doi: 10.1016/j.neuroimage.2007.03.003 CrossRefPubMedGoogle Scholar
  80. Zhang H, Hubbard PL, Parker GJM, Alexander DC (2011) Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. Neuroimage 56:1301–1315. doi: 10.1016/j.neuroimage.2011.01.084 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nina L. Reislev
    • 1
    • 2
  • Ron Kupers
    • 2
  • Hartwig R. Siebner
    • 1
    • 3
  • Maurice Ptito
    • 1
    • 2
    • 4
  • Tim B. Dyrby
    • 1
  1. 1.Danish Research Centre for Magnetic Resonance, Section 714, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
  2. 2.BRAINlab, Department of Neuroscience and Pharmacology, Faculty of Health & Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of NeurologyCopenhagen University Hospital BispebjergCopenhagenDenmark
  4. 4.School of OptometryUniversité de MontréalMontrealCanada

Personalised recommendations