Brain Structure and Function

, Volume 221, Issue 4, pp 1833–1843 | Cite as

Young, active and well-connected: adult-born neurons in the zebra finch are activated during singing

  • Kirill Tokarev
  • Arjen J. Boender
  • Gala A. E. Claßen
  • Constance Scharff
Original Article


Neuronal replacement in the pallial song control nucleus HVC of adult zebra finches constitutes an interesting case of homeostatic plasticity; in spite of continuous addition and attrition of neurons in ensembles that code song elements, adult song remains remarkably invariant. New neurons migrate into HVC and later synapse with their target, arcopallial song nucleus RA (HVCRA). New HVCRA neurons respond to auditory stimuli (in anaesthetised animals), but whether and when they become functionally active during singing is unknown. We studied this, using 5-bromo-2′-deoxyuridine to birth-date neurons, combined with immunohistochemical detection of immediate-early gene (IEG) expression and retrograde tracer injections into RA to track connectivity. Interestingly, singing was followed by IEG expression in a substantial fraction of new neurons that were not retrogradely labelled from RA, suggesting a possible role in HVC-intrinsic network function. As new HVC neurons matured, the proportion of HVCRA neurons that expressed IEGs after singing increased significantly. Since it was previously shown that singing induces IEG expression in HVC also in deaf birds and that hearing song does not induce IEG expression in HVC, our data provide the first direct evidence that new HVC neurons are engaged in song motor behaviour.


Adult neurogenesis Vocalisations Vocal control Maturation Immediate-early genes 



Parts of this work were funded by SFB (Sonderforschungsbereich) 655. KT is grateful for generous support provided by a fellowship from the Boehringer Ingelheim Fonds. We appreciate Philip Rebensburg’s contribution to analysis of data on new neurons in Area X. We thank Volker Haucke and his group for technical support in microscopy. Jonathan Benichov provided useful commentary on the original manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

429_2015_1006_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2329 kb)


  1. Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727CrossRefPubMedGoogle Scholar
  2. Alonso M, Lepousez G, Sebastien W, Bardy C, Gabellec MM, Torquet N, Lledo PM (2012) Activation of adult-born neurons facilitates learning and memory. Nat Neurosci 15:897–904CrossRefPubMedGoogle Scholar
  3. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136:269–293CrossRefPubMedGoogle Scholar
  4. Altman J, Das GD (1965) Post-natal origin of microneurones in the rat brain. Nature 207:953–956CrossRefPubMedGoogle Scholar
  5. Alvarez-Buylla A, Kirn JR (1997) Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol 33:585–601CrossRefPubMedGoogle Scholar
  6. Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686CrossRefPubMedGoogle Scholar
  7. Alvarez-Buylla A, Nottebohm F (1988) Migration of young neurons in adult avian brain. Nature 335:353–354CrossRefPubMedGoogle Scholar
  8. Amador A, Perl YS, Mindlin GB, Margoliash D (2013) Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature 495:59–64CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barnea A, Nottebohm F (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci USA 91:11217–11221CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berninger B, Marty S, Zafra F, da Penha Berzaghi M, Thoenen H, Lindholm D (1995) GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121:2327–2335PubMedGoogle Scholar
  11. Blättler F, Hahnloser RH (2011) An efficient coding hypothesis links sparsity and selectivity of neural responses. PLoS One 6:e25506CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burd GD, Nottebohm F (1985) Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J Comp Neurol 240:143–152CrossRefPubMedGoogle Scholar
  13. Cardin JA, Schmidt MF (2004) Auditory responses in multiple sensorimotor song system nuclei are co-modulated by behavioral state. J Neurophysiol 91:2148–2163CrossRefPubMedGoogle Scholar
  14. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608CrossRefPubMedGoogle Scholar
  15. Cayre M, Malaterre J, Scotto-Lomassese S, Strambi C, Strambi A (2002) The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comp Biochem Physiol B Biochem Mol Biol 132:1–15CrossRefPubMedGoogle Scholar
  16. Charvet CJ, Striedter GF (2011a) Causes and consequences of expanded subventricular zones. Eur J Neurosci 34:988–993CrossRefPubMedGoogle Scholar
  17. Charvet CJ, Striedter GF (2011b) Developmental modes and developmental mechanisms can channel brain evolution. Front Neuroanat 5:4. doi: 10.3389/fnana.2011.00004
  18. Cole AJ, Saffen DW, Baraban JM, Worley PF (1989) Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 340:474–476CrossRefPubMedGoogle Scholar
  19. Curtis MA, Kam M, Faull RL (2011) Neurogenesis in humans. Eur J Neurosci 33:1170–1174CrossRefPubMedGoogle Scholar
  20. Duque A, Rakic P (2011) Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci 31:15205–15217CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dutar P, Vu HM, Perkel DJ (1998) Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. J Neurophysiol 80:1828–1838PubMedGoogle Scholar
  22. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317CrossRefPubMedGoogle Scholar
  23. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072–1083CrossRefPubMedGoogle Scholar
  24. Fee MS, Kozhevnikov AA, Hahnloser RH (2004) Neural mechanisms of vocal sequence generation in the songbird. Ann N Y Acad Sci 1016:153–170CrossRefPubMedGoogle Scholar
  25. Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED (2008) Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS One 3:e1768CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fleischmann A, Hvalby O, Jensen V, Strekalova T, Zacher C, Layer LE, Kvello A, Reschke M, Spanagel R, Sprengel R, Wagner EF, Gass P (2003) Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J Neurosci 23:9116–9122PubMedGoogle Scholar
  27. Font E, Desfilis E, Perez-Canellas MM, Garcia-Verdugo JM (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 58:276–295CrossRefPubMedGoogle Scholar
  28. Fortune ES, Margoliash D (1995) Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). J Comp Neurol 360:413–441CrossRefPubMedGoogle Scholar
  29. Foster EF, Bottjer SW (1998) Axonal connections of the high vocal center and surrounding cortical regions in juvenile and adult male zebra finches. J Comp Neurol 397:118–138CrossRefPubMedGoogle Scholar
  30. Gahr M, Garcia-Segura LM (1996) Testosterone-dependent increase of gap-junctions in HVC neurons of adult female canaries. Brain Res 712:69–73CrossRefPubMedGoogle Scholar
  31. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ge S, Sailor KA, Ming GL, Song H (2008) Synaptic integration and plasticity of new neurons in the adult hippocampus. J Physiol 586:3759–3765CrossRefPubMedPubMedCentralGoogle Scholar
  33. Goldberg JH, Fee MS (2012) A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds. Nat Neurosci 15:620–627CrossRefPubMedPubMedCentralGoogle Scholar
  34. Goldman SA, Nedergaard M (1992) Newly generated neurons of the adult songbird brain become functionally active in long-term culture. Brain Res Dev Brain Res 68:217–223CrossRefPubMedGoogle Scholar
  35. Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488CrossRefPubMedGoogle Scholar
  37. Graber MH, Helmchen F, Hahnloser RH (2013) Activity in a premotor cortical nucleus of zebra finches is locally organized and exhibits auditory selectivity in neurons but not in glia. PLoS One 8:e81177CrossRefPubMedPubMedCentralGoogle Scholar
  38. Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21:5089–5098PubMedGoogle Scholar
  39. Hahnloser RH, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70CrossRefPubMedGoogle Scholar
  40. Hessler NA, Doupe AJ (1999) Social context modulates singing-related neural activity in the songbird forebrain. Nat Neurosci 2:209–211CrossRefPubMedGoogle Scholar
  41. Hughes PE, Young D, Preston KM, Yan Q, Dragunow M (1998) Differential regulation by MK801 of immediate-early genes, brain-derived neurotrophic factor and trk receptor mRNA induced by a kindling after-discharge. Brain Res Mol Brain Res 53:138–151CrossRefPubMedGoogle Scholar
  42. Hurley P, Pytte C, Kirn JR (2008) Nest of origin predicts adult neuron addition rates in the vocal control system of the zebra finch. Brain Behav Evol 71:263–270CrossRefPubMedPubMedCentralGoogle Scholar
  43. Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161CrossRefPubMedGoogle Scholar
  44. Jarvis ED, Nottebohm F (1997) Motor-driven gene expression. Proc Natl Acad Sci USA 94:4097–4102CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F (1998) For whom the bird sings: context-dependent gene expression. Neuron 21:775–788CrossRefPubMedGoogle Scholar
  46. Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18:2707–2712CrossRefPubMedGoogle Scholar
  47. Jin DZ, Ramazanoglu FM, Seung HS (2007) Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J Comput Neurosci 23:283–299CrossRefPubMedGoogle Scholar
  48. Jones MW, Errington ML, French PJ, Fine A, Bliss TV, Garel S, Charnay P, Bozon B, Laroche S, Davis S (2001) A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat Neurosci 4:289–296CrossRefPubMedGoogle Scholar
  49. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362CrossRefPubMedGoogle Scholar
  50. Kempermann G (2014) Off the beaten track: new neurons in the adult human striatum. Cell 156:870–871CrossRefPubMedGoogle Scholar
  51. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191CrossRefPubMedGoogle Scholar
  52. Kimpo RR, Doupe AJ (1997) FOS is induced by singing in distinct neuronal populations in a motor network. Neuron 18:315–325CrossRefPubMedGoogle Scholar
  53. Kirn JR, Alvarez-Buylla A, Nottebohm F (1991) Production and survival of projection neurons in a forebrain vocal center of adult male canaries. J Neurosci 11:1756–1762PubMedGoogle Scholar
  54. Kirn JR, O’Loughlin B, Kasparian S, Nottebohm F (1994) Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc Natl Acad Sci USA 91:7844–7848CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kirn JR, Fishman Y, Sasportas K, Alvarez-Buylla A, Nottebohm F (1999) Fate of new neurons in adult canary high vocal center during the first 30 days after their formation. J Comp Neurol 411:487–494CrossRefPubMedGoogle Scholar
  56. Kojima S, Doupe AJ (2009) Activity propagation in an avian basal ganglia-thalamocortical circuit essential for vocal learning. J Neurosci 29:4782–4793CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kozhevnikov AA, Fee MS (2007) Singing-related activity of identified HVC neurons in the zebra finch. J Neurophysiol 97:4271–4283CrossRefPubMedGoogle Scholar
  58. Kruse AA, Stripling R, Clayton DF (2000) Minimal experience required for immediate-early gene induction in zebra finch neostriatum. Neurobiol Learn Mem 74:179–184CrossRefPubMedGoogle Scholar
  59. Kubikova L, Turner EA, Jarvis ED (2007) The pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway. Eur J Neurosci 25:2145–2160CrossRefPubMedPubMedCentralGoogle Scholar
  60. LaDage LD, Roth TC 2nd, Pravosudov VV (2011) Hippocampal neurogenesis is associated with migratory behaviour in adult but not juvenile sparrows (Zonotrichia leucophrys ssp.). Proc Biol Sci 278:138–143CrossRefPubMedPubMedCentralGoogle Scholar
  61. Li XC, Jarvis ED, Alvarez-Borda B, Lim DA, Nottebohm F (2000) A relationship between behavior, neurotrophin expression, and new neuron survival. Proc Natl Acad Sci USA 97:8584–8589CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ma DK, Kim WR, Ming GL, Song H (2009) Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci 1170:664–673CrossRefPubMedPubMedCentralGoogle Scholar
  63. MacGibbon GA, Lawlor PA, Hughes P, Young D, Dragunow M (1995) Differential expression of inducible transcription factors in basal ganglia neurons. Brain Res Mol Brain Res 34:294–302CrossRefPubMedGoogle Scholar
  64. Magavi SS, Mitchell BD, Szentirmai O, Carter BS, Macklis JD (2005) Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. J Neurosci 25:10729–10739CrossRefPubMedGoogle Scholar
  65. Mileusnic R, Anokhin K, Rose SP (1996) Antisense oligodeoxynucleotides to c-fos are amnestic for passive avoidance in the chick. NeuroReport 7:1269–1272CrossRefPubMedGoogle Scholar
  66. Mongiat LA, Esposito MS, Lombardi G, Schinder AF (2009) Reliable activation of immature neurons in the adult hippocampus. PLoS One 4:e5320CrossRefPubMedPubMedCentralGoogle Scholar
  67. Mooney R, Prather JF (2005) The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways. J Neurosci 25:1952–1964CrossRefPubMedGoogle Scholar
  68. Nissant A, Bardy C, Katagiri H, Murray K, Lledo PM (2009) Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci 12:728–730CrossRefPubMedGoogle Scholar
  69. Nixdorf BE, Davis SS, DeVoogd TJ (1989) Morphology of Golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries. J Comp Neurol 284:337–349CrossRefPubMedGoogle Scholar
  70. Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486CrossRefPubMedGoogle Scholar
  71. Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318CrossRefPubMedGoogle Scholar
  72. Paton JA, Nottebohm FN (1984) Neurons generated in the adult brain are recruited into functional circuits. Science 225:1046–1048CrossRefPubMedGoogle Scholar
  73. Prather JF, Peters S, Nowicki S, Mooney R (2008) Precise auditory-vocal mirroring in neurons for learned vocal communication. Nature 451:305–310CrossRefPubMedGoogle Scholar
  74. Pytte CL, Gerson M, Miller J, Kirn JR (2007) Increasing stereotypy in adult zebra finch song correlates with a declining rate of adult neurogenesis. Dev Neurobiol 67:1699–1720CrossRefPubMedGoogle Scholar
  75. Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3:65–71CrossRefPubMedGoogle Scholar
  76. Rauske PL, Shea SD, Margoliash D (2003) State and neuronal class-dependent reconfiguration in the avian song system. J Neurophysiol 89:1688–1701CrossRefPubMedGoogle Scholar
  77. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sasaki A, Sotnikova TD, Gainetdinov RR, Jarvis ED (2006) Social context-dependent singing-regulated dopamine. J Neurosci 26:9010–9014CrossRefPubMedPubMedCentralGoogle Scholar
  79. Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci 11:2896–2913PubMedGoogle Scholar
  80. Scharff C, Kirn JR, Grossman M, Macklis JD, Nottebohm F (2000) Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron 25:481–492CrossRefPubMedGoogle Scholar
  81. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187CrossRefPubMedGoogle Scholar
  82. Scott BB, Lois C (2007) Developmental origin and identity of song system neurons born during vocal learning in songbirds. J Comp Neurol 502:202–214CrossRefPubMedGoogle Scholar
  83. Scott BB, Gardner T, Ji N, Fee MS, Lois C (2012) Wandering neuronal migration in the postnatal vertebrate forebrain. J Neurosci 32:1436–1446CrossRefPubMedGoogle Scholar
  84. Scotto-Lomassese S, Rochefort C, Nshdejan A, Scharff C (2007) HVC interneurons are not renewed in adult male zebra finches. Eur J Neurosci 25:1663–1668CrossRefPubMedGoogle Scholar
  85. Shea SD, Koch H, Baleckaitis DD, Ramirez JM, Margoliash D (2009) Neuron-specific cholinergic modulation of a forebrain song control nucleus. J Neurophysiol 103(2):733–745CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sossinka R, Böhner J (1980) Song types in the zebra finch (Poephila guttata castanotis). Z Tierpsychol 53:123–132Google Scholar
  87. Stokes TM, Leonard CM, Nottebohm F (1974) The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J Comp Neurol 156:337–374CrossRefPubMedGoogle Scholar
  88. Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 27:3252–3259CrossRefPubMedGoogle Scholar
  89. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP (2000) A procedure for an automated measurement of song similarity. Anim Behav 59:1167–1176CrossRefPubMedGoogle Scholar
  90. Tokarev K, Tiunova A, Scharff C, Anokhin K (2011) Food for song: expression of C-Fos and ZENK in the Zebra Finch song nuclei during food aversion learning. PLoS One 6:e21157CrossRefPubMedPubMedCentralGoogle Scholar
  91. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815CrossRefPubMedGoogle Scholar
  92. Tramontin AD, Brenowitz EA (1999) A field study of seasonal neuronal incorporation into the song control system of a songbird that lacks adult song learning. J Neurobiol 40:316–326CrossRefPubMedGoogle Scholar
  93. Vates GE, Vicario DS, Nottebohm F (1997) Reafferent thalamo—“cortical” loops in the song system of oscine songbirds. J Comp Neurol 380:275–290CrossRefPubMedGoogle Scholar
  94. Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas MV, Horita H, Patterson MA, White SA, Scharff C, Haesler S, Zhao S, Sakaguchi H, Hagiwara M, Shiraki T, Hirozane-Kishikawa T, Skene P, Hayashizaki Y, Carninci P, Jarvis ED (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci USA 103:15212–15217CrossRefPubMedPubMedCentralGoogle Scholar
  95. Walton C, Pariser E, Nottebohm F (2012) The zebra finch paradox: song is little changed, but number of neurons doubles. J Neurosci 32:761–774CrossRefPubMedGoogle Scholar
  96. Woolley SC, Doupe AJ (2008) Social context-induced song variation affects female behavior and gene expression. PLoS Biol 6:e62CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yu AC, Margoliash D (1996) Temporal hierarchical control of singing in birds. Science 273:1871–1875CrossRefPubMedGoogle Scholar
  98. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kirill Tokarev
    • 1
    • 4
  • Arjen J. Boender
    • 2
    • 4
  • Gala A. E. Claßen
    • 3
    • 4
  • Constance Scharff
    • 4
  1. 1.Laboratory of Animal Behavior, Psychology DepartmentHunter CollegeNew YorkUSA
  2. 2.Department of Translational Neuroscience, Brain Centre, Rudolf MagnusUniversity Medical Centre UtrechtUtrechtThe Netherlands
  3. 3.Department of Molecular Pharmacology and Cell BiologyLeibnitz Institut für Molekulare PharmakologieBerlinGermany
  4. 4.Department of Animal BehaviourFreie Universität BerlinBerlinGermany

Personalised recommendations